Skip to main content
Log in

Contribution of β-phenethylamine, a component of chocolate and wine, to dopaminergic neurodegeneration: implications for the pathogenesis of Parkinson’s disease

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

While the cause of dopaminergic neuronal cell death in Parkinson’s disease (PD) is not yet understood, many endogenous molecules have been implicated in its pathogenesis. β-phenethylamine (β-PEA), a component of various food items including chocolate and wine, is an endogenous molecule produced from phenylalanine in the brain. It has been reported recently that long-term administration of β-PEA in rodents causes neurochemical and behavioral alterations similar to that produced by parkinsonian neurotoxins. The toxicity of β-PEA has been linked to the production of hydroxyl radical (.OH) and the generation of oxidative stress in dopaminergic areas of the brain, and this may be mediated by inhibition of mitochondrial complex-I. Another signifi cant observation is that administration of β-PEA to rodents reduces striatal dopamine content and induces movement disorders similar to those of parkinsonian rodents. However, no reports are available on the extent of dopaminergic neuronal cell death after administration of β-PEA. Based on the literature, we set out to establish β-PEA as an endogenous molecule that potentially contributes to the progressive development of PD. The sequence of molecular events that could be responsible for dopaminergic neuronal cell death in PD by consumption of β-PEA-containing foods is proposed here. Thus, long-term over-consumption of food items containing β-PEA could be a neurological risk factor having significant pathological consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlsson A. Treatment of Parkinson’s with L-DOPA. The early discovery phase, and a comment on current problems. J Neural Transm 2002, 109: 777–787.

    Article  PubMed  CAS  Google Scholar 

  2. Borah A, Mohanakumar KP. Long-term L-DOPA treatment causes indiscriminate increase in dopamine levels at the cost of serotonin synthesis in discrete brain regions of rats. Cell Mol Neurobiol 2007, 27: 985–996.

    Article  PubMed  CAS  Google Scholar 

  3. Przedborski S, Ischiropoulos H. Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson’s disease. Antioxid Redox Signal 2005, 7: 685–693.

    Article  PubMed  CAS  Google Scholar 

  4. Schapira AH, Gu M, Taanman JW, Tabrizi SJ, Seaton T, Cleeter M, et al. Mitochondria in the etiology and pathogenesis of Parkinson’s disease. Ann Neurol 1998, 44: S89–98.

    PubMed  CAS  Google Scholar 

  5. Beal MF. Experimental models of Parkinson’s disease. Nat Rev Neurosci 2001, 2: 325–332.

    Article  PubMed  CAS  Google Scholar 

  6. Blandini F, Armentero MT. Animal models of Parkinson’s disease. FEBS J 2012, 279: 1156–1166.

    Article  PubMed  CAS  Google Scholar 

  7. Duan W, Ladenheim B, Cutler RG, Kruman II, Cadet JL, Mattson MP. Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J Neurochem 2002, 80: 101–110.

    Article  PubMed  CAS  Google Scholar 

  8. Borah A, Mohanakumar KP. L-DOPA induced-endogenous 6-hydroxydopamine is the cause of aggravated dopaminergic neurodegeneration in Parkinson’s disease patients. Med Hypotheses 2012, 79(2): 271–273.

    Article  PubMed  CAS  Google Scholar 

  9. Borah A, Mohanakumar KP. L-DOPA-induced 6-hydroxydopamine production in the striata of rodents is sensitive to the degree of denervation. Neurochem Int 2010a, 56: 352–362.

    Article  Google Scholar 

  10. Borah A, Mohanakumar KP. Salicylic acid protects against chronic L-DOPA-induced 6-OHDA generation in experimental model of parkinsonism. Brain Res 2010b, 16: 192–199.

    Article  Google Scholar 

  11. Borah A, Mohanakumar KP. Melatonin inhibits 6-hydroxydopamine production in the brain to protect against experimental Parkinsonism in rodents. J Pineal Res 2009a, 47: 293–300.

    Article  PubMed  CAS  Google Scholar 

  12. Borah A, Mohanakumar KP. Long term L-DOPA treatment causes production of 6 OHDA in the mouse striatum: Involvement of hydroxyl radical. Ann Neurosci 2009b, 16: 160–165.

    CAS  Google Scholar 

  13. Chen L, Ding Y, Cagniard B, Van Laar AD, Mortimer A, Chi W, et al. Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci 2008, 28: 425–433.

    Article  PubMed  Google Scholar 

  14. Dillinger TL, Barriga P, Escarcega S, Jimenez M, Lowe DS, Grivetti LE. Food of the Gods: Cure for humanity? A cultural history of the medicinal and ritual use of chocolate. J Nutr 2000, 130: 2057S–2072S.

    PubMed  CAS  Google Scholar 

  15. Ziegleder G, Stojacic E, Stumpf B. Occurrence of betaphenylethylamine and its derivatives in cocoa and cocoa products. Z Lebensm Unters Forsch 1992, 195: 235–238. [Article in German]

    Article  PubMed  CAS  Google Scholar 

  16. Philips SR. Amphetamine, p-hydroxyamphetamine and b-phenylethylamine in mouse brain and urine after (−)- and (+)-deprenyl administration. J Pharm Pharmacol 1981, 33: 739–741.

    Article  PubMed  CAS  Google Scholar 

  17. Durden DA, Philips SR, Boulton AA. Identification and distribution of beta-phenylethylamine in the rat. Can J Biochem 1973, 51: 995–1002.

    Article  PubMed  CAS  Google Scholar 

  18. Pastore P, Favaro G, Badocco D, Tapparo A, Cavalli S, Saccani G. Determination of biogenic amines in chocolate by ion chromatographic separation and pulsed integrated amperometric detection with implemented wave-form at Au disposable electrode. J Chromatogr 2005, 1098: 111–115.

    Article  CAS  Google Scholar 

  19. Hurst WJ, Toomey PB. High-performance liquid chromatographic determination of four biogenic amines in chocolate. Analyst 1981, 106: 394–402.

    Article  PubMed  CAS  Google Scholar 

  20. Bonetta S, Bonetta S, Carraro E, Coïsson JD, Travaglia F, Arlorio M. Detection of biogenic amine producer bacteria in a typical Italian goat cheese. J Food Prot 2008, 71: 205–209.

    PubMed  CAS  Google Scholar 

  21. Landete JM, Ferrer S, Polo L, Pardo I. Biogenic amines in wines from three Spanish regions. J Agric Food Chem 2005, 53: 1119–1124.

    Article  PubMed  CAS  Google Scholar 

  22. Garcia VN, Saurina J, Hernández-Cassou S. Highperformance liquid chromatographic determination of biogenic amines in wines with an experimental design optimization procedure. Anal Chim Acta 2006, 575: 97–105.

    Article  Google Scholar 

  23. Berry MD. Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J Neurochem 2004, 90: 257–271.

    Article  PubMed  CAS  Google Scholar 

  24. Paterson IA, Juorio AV, Boulton AA. Phenylethylamine: a modulator of catecholamine transmission in the mammalian central nervous system? J Neurochem 1990, 55: 1827–1837.

    Article  PubMed  CAS  Google Scholar 

  25. Saravanan KS, Sindhu KM, Senthilkumar KS, Mohanakumar KP. L-deprenyl protects against rotenone-induced, oxidative stress-mediated dopaminergic neurodegeneration in rats. Neurochem Int 2006, 49: 28–40.

    Article  PubMed  CAS  Google Scholar 

  26. Thomas B, Mohanakumar KP. Melatonin protects against oxidative stress caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the mouse nigros-tiratum. J Pineal Res 2004, 36: 25–32.

    Article  PubMed  CAS  Google Scholar 

  27. Thomas B, Saravanan KS, Mohanakumar KP. In vitro and in vivo evidences that antioxidant action contributes to the neuroprotective effects of the neuronal nitric oxide synthase and monoamine oxidase-B inhibitor, 7-nitroindazole. Neurochem Int 2008, 52: 990–1001.

    Article  PubMed  CAS  Google Scholar 

  28. Sengupta T, Mohanakumar KP. 2-Phenylethylamine, a constituent of chocolate and wine, causes mitochondrial complex-I inhibition, generation of hydroxyl radicals and depletion of striatal biogenic amines leading to psycho-motor dysfunctions in Balb/c mice. Neurochem Int 2010, 57: 637–646.

    Article  PubMed  CAS  Google Scholar 

  29. Gluck MR, Zeevalk GD. Inhibition of brain mitochondrial respiration by dopamine and its metabolites: implications for Parkinson’s disease and catecholamine-associated diseases. J Neurochem 2004, 91: 788–795.

    Article  PubMed  CAS  Google Scholar 

  30. Kawano T, Pinontoan R, Uozumi N, Morimitsu Y, Miyake C, Asada K, et al. Phenylethylamine-induced generation of reactive oxygen species and ascorbate free radicals in tobacco suspension culture: mechanism for oxidative burst mediating Ca2+ influx. Plant Cell Physiol 2000, 41: 1259–1266.

    Article  PubMed  CAS  Google Scholar 

  31. Ortmann R, Schaub M, Felner A, Lauber J, Christen P, Waldmeier PC. Phenylethylamine-induced stereotypes in the rat: a behavioral test system for assessment of MAO-B inhibitors. Psychopharmacology (Berl) 1984, 84: 22–27.

    Article  CAS  Google Scholar 

  32. Lapin IP. Antagonism by CPP (+/−)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid, of beta-phenylethylamine (PEA)-induced hypermotility in mice of different strains. Pharmacol Biochem Behav 1996, 55: 175–178.

    Article  PubMed  CAS  Google Scholar 

  33. Barroso N, Rodriguez M. Beta-Phenylethylamine regulation of dopaminergic nigrostriatal cell activity. Brain Res 1995, 12: 201–204.

    Google Scholar 

  34. Barroso N, Rodriguez M. Action of β-phenylethylamine and related amines on nigrostriatal dopamine neurotransmission. Eur J Pharmacol 1996, 297: 195–203.

    Article  PubMed  CAS  Google Scholar 

  35. Sato S, Tamura A, Kitagawa S, Koshiro A. A kinetic analysis of the effects of beta-phenylethylamine on the concentrations of dopamine and its metabolites in the rat striatum. J Pharm Sci 1997, 86: 487–496.

    Article  PubMed  CAS  Google Scholar 

  36. Sindhu KM, Banerjee R, Senthilkumar KS, Saravanan KS, Raju BC, Rao JM, et al. Rats with unilateral median forebrain bundle, but not striatal or nigral, lesions by the neurotoxins MPP+ or rotenone display differential sensitivity to amphetamine and apomorphine. Pharmacol Biochem Behav 2006, 84: 321–329.

    Article  PubMed  CAS  Google Scholar 

  37. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 2000, 3: 1301–1306.

    Article  PubMed  CAS  Google Scholar 

  38. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443: 787–795.

    Article  PubMed  CAS  Google Scholar 

  39. Hauser DN, Hastings TG. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 2013, 51: 35–42.

    Article  PubMed  CAS  Google Scholar 

  40. Hashimoto M, Hsu LJ, Xia Y, Takeda A, Sisk A, Sundsmo M, et al. Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro. Neuroreport 1999, 10: 717–721.

    Article  PubMed  CAS  Google Scholar 

  41. Souza JM, Giasson BI, Chen Q, Lee VM, Ischiropoulos H. Dityrosine cross-linking promotes formation of stable alpha-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem 2000, 275: 18344–18349.

    Article  PubMed  CAS  Google Scholar 

  42. Giasson BI, Ischiropoulos H, Lee VM, Trojanowski JQ. The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer’s and Parkinson’s diseases. Free Radic Biol Med 2002, 32: 1264–1275.

    Article  PubMed  CAS  Google Scholar 

  43. Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease. Science 2003, 302: 819–822.

    Article  PubMed  CAS  Google Scholar 

  44. Ghee M, Fournier A, Mallet J. Rat alpha-synuclein interacts with Tat binding protein 1, a component of the 26S proteasomal complex. J Neurochem 2000, 75: 2221–2224.

    Article  PubMed  CAS  Google Scholar 

  45. Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, Wolozin B. Aggregated and monomeric α-synuclein bind to the S6 proteasomal protein and inhibit proteasomal function. J Biol Chem 2003, 278: 11753–11759.

    Article  PubMed  CAS  Google Scholar 

  46. Sherman MY, Goldberg AL. Cellular defences against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 2001, 19: 15–32.

    Article  Google Scholar 

  47. Lee HJ, Shin SY, Choi C, Lee YH, Lee SJ. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem 2002, 277: 5411–5417.

    Article  PubMed  CAS  Google Scholar 

  48. Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, et al. Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 2003, 23: 10756–10764.

    PubMed  CAS  Google Scholar 

  49. Betarbet R, Canet-Aviles RM, Sherer TB, Mastroberardino PG, McLendon C, Kim JH, et al. Intersecting pathways to neurodegeneration in Parkinson’s disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis 2006, 22: 404–420.

    Article  PubMed  CAS  Google Scholar 

  50. Chou AP, Li S, Fitzmaurice AG, Bronstei JM. Mechanisms of rotenone-induced proteasome inhibition. Neurotoxicology 2010, 4: 367–372.

    Article  Google Scholar 

  51. Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA. The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha synuclein. J Biol Chem 2002, 277: 1641–1644.

    Article  PubMed  CAS  Google Scholar 

  52. Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, Przedborski S. Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the Parkinsonian toxin MPTP. J Neurochem 2000, 74: 721–729.

    Article  PubMed  CAS  Google Scholar 

  53. McNaught KS, Perl DP, Brownell AL, Olanow CW. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol 2004, 56: 149–162.

    Article  PubMed  CAS  Google Scholar 

  54. Olanow CW, McNaught KS. Ubiquitin-proteasome system and Parkinson’s disease. Mov Disord 2006, 21: 1806–1823.

    Article  PubMed  Google Scholar 

  55. Sullivan PG, Dragicevic NB, Deng JH, Bai Y, Dimayuga E, Ding Q, et al. Proteasome inhibition alters neural mitochondrial homeostasis and mitochondria turnover. J Biol Chem 2004, 279: 20699–20707.

    Article  PubMed  CAS  Google Scholar 

  56. Petrucelli L, O’Farrell C, Lockhart PJ, Baptista M, Kehoe K, Vink L, et al. Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 2002, 36: 1007–1019.

    Article  PubMed  CAS  Google Scholar 

  57. Tatton NA. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 2000, 166: 29–43.

    Article  PubMed  CAS  Google Scholar 

  58. Hetherington MM, MacDiarmid JI. “Chocolate addiction”: a preliminary study of its description and its relationship to problem eating. Appetite 1993, 21: 233–246.

    Article  PubMed  CAS  Google Scholar 

  59. Lee KW, Kim YJ, Lee HJ, Lee CY. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem 2003, 51: 7292–7295.

    Article  PubMed  CAS  Google Scholar 

  60. Ruan H, Yang Y, Zhu X, Wang X, Chen R. Neuroprotective effects of (+/−)-catechin against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced dopaminergic neurotoxicity in mice. Neurosci Lett 2009, 450: 152–157.

    Article  PubMed  CAS  Google Scholar 

  61. Kim JS, Kim JM, O JJ, Jeon BS. Inhibition of inducible nitric oxide synthase expression and cell death by (−)-epigallocatechin-3-gallate, a green tea catechin, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. J Clin Neurosci 2010, 17: 1165–1168.

    Article  PubMed  CAS  Google Scholar 

  62. Mennen LI, Walker R, Bennetau-Pelissero C, Scalbert A. Risks and safety of polyphenol consumption. Am J Clin Nutr 2005, 81: 326S–329S.

    PubMed  CAS  Google Scholar 

  63. Arts IC, Hollman PC. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 2005, 81: 317S–325S.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupom Borah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borah, A., Paul, R., Mazumder, M.K. et al. Contribution of β-phenethylamine, a component of chocolate and wine, to dopaminergic neurodegeneration: implications for the pathogenesis of Parkinson’s disease. Neurosci. Bull. 29, 655–660 (2013). https://doi.org/10.1007/s12264-013-1330-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1330-2

Keywords

Navigation