Skip to main content
Log in

Antioxidative effect of phycoerythrin derived from Grateloupia filicina on rat primary astrocytes

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Astrocytes, which support neuronal tissue and activity in the brain, are receiving attention as a possible target for treating neurological damage. Phycoerythrin extract, a pigment protein of red algae, is known to have anti-inflammatory, anti-cancer, and anti-viral effects. In this study, Phycoerythrin extract from Grateloupia filicina (GfPE) was used to treat astrocytes and then assessed for its ability to protect against physiological changes under oxidative stress via H2O2. GfPE had a good effect on viability and proliferation of astrocytes that were downregulated under oxidative stress. Accordingly, GfPE alleviated the increasing effect of H2O2 on ROS of astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woods, J. R. Jr, M. A. Plessinger, and A. Fantel (1998) An introduction to reactive oxygen species and their possible roles in substance abuse. Obstet. Gynecol. Clin. North Am. 25: 219–236.

    Article  Google Scholar 

  2. Forman, H. J. and M. Torres (2002) Reactive oxygen species and cell signaling: Respiratory burst in macrophage signaling. Am. J. Respir. Crit. Care Med. 166: S4–S8.

    Article  Google Scholar 

  3. Thannickal, V. J. and B. L. Fanburg (2000) Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 279: L1005–L1028.

    CAS  Google Scholar 

  4. Valentão, P., E. Fernandes, F. Carvalho, P. B. Andrade, R. M. Seabra, and M. L. Bastos (2002) Antioxidative properties of cardoon (Cynara cardunculus L.) infusion against superoxide radical, hydroxyl radical, and hypochlorous acid. J. Agric. Food Chem. 50: 4989–4993.

    Article  Google Scholar 

  5. LeBel, C. P., H. Ischiropoulos, and S. C. Bondy (1992) Evaluation of the probe 2', 7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5: 227–231.

    Article  CAS  Google Scholar 

  6. Touyz, R. M. (2004) Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension what is the clinical significance? Hypertension 44: 248–252.

    Article  CAS  Google Scholar 

  7. Halliwell, B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem. 59: 1609–1623.

    Article  CAS  Google Scholar 

  8. Piantadosi, C. A. and J. Zhang (1996) Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 27: 327–332.

    Article  CAS  Google Scholar 

  9. Chan, P. H. (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow. Metab 21: 2–14.

    Article  CAS  Google Scholar 

  10. Kalaria, R. N. (2000) The role of cerebral ischemia in Alzheimer’s disease. Neurobiol. Aging 21: 321–330.

    Article  CAS  Google Scholar 

  11. Molofsky, A. V., R. Krencik, E. M. Ullian, H. H. Tsai, B. Deneen, W. D. Richardson, B. A. Barres, and D. H. Rowitch (2012) Astrocytes and disease: A neurodevelopmental perspective. Gene Dev. 26: 891–907.

    Article  CAS  Google Scholar 

  12. Pekny, M. and P. Marcela (2004) Astrocyte intermediate filaments in CNS pathologies and regeneration. J. Pathol. 204: 428–437.

    Article  CAS  Google Scholar 

  13. Sofroniew, M. V. and V. V. Harry (2010) Astrocytes: Biology and pathology. Acta Neuropathol. 119: 7–35.

    Article  Google Scholar 

  14. Norenberg, M. D. (1994) Astrocyte responses to CNS injury. J. Neuropathol. Exp. Neurol. 53: 213–220.

    Article  CAS  Google Scholar 

  15. McKeon, R. J., J. J. Michael, and R. B. Charles (1999) The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J. Neurosci. 19: 10778–10788.

    CAS  Google Scholar 

  16. Fitch, M. T. and S. Jerry (2008) CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp. Neurol. 209: 294–301.

    Article  CAS  Google Scholar 

  17. Lucas, S. -M., J. R. Nancy, and M. G. Rosemary (2006) The role of inflammation in CNS injury and disease. Br. J. Pharmacol. 147: S232–S240.

    Article  CAS  Google Scholar 

  18. Craig, M., R. Vijayaraghava, F. Shih-Chieh, B. Barry, L. Samuel, B. -O. Amit, and A. Jack (2014) Implicating MicroRNAs as regulators of microglia and astrocyte responses in human CNS inflammatory disease (P5. 018). Neurol. 82: 5–18.

    Article  Google Scholar 

  19. Pekny, M., W. Ulrika, and P. Marcela (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci. Lett. 565: 30–38.

    Article  CAS  Google Scholar 

  20. Romero, J., J. Muñiz, T. Logica Tornatore, M. Holubiec, J. González, G. E. Barreto, L. Guelman, C. H. Lillig, E. Blanco, and F. Capani (2014) Dual role of astrocytes in perinatal asphyxia injury and neuroprotection. Neurosci. Lett. 565: 42–46.

    Article  CAS  Google Scholar 

  21. Takamatsu, S., T. W. Hodges, I. Rajbhandari, W. H. Gerwick, M. T. Hamann, and D. G. Nagle (2003) Marine natural products as novel antioxidant prototypes. J. Nat. Prod. 66: 605–608.

    Article  CAS  Google Scholar 

  22. Barba, F. J., M. N. Criado, C. M. Belda-Galbis, M. J. Esteve, and D. Rodrigo (2014) Stevia rebaudiana Bertoni as a natural antioxidant/antimicrobial for high pressure processed fruit extract: Processing parameter optimization. Food Chem. 148: 261–267.

    Article  CAS  Google Scholar 

  23. Mi-Yae, S., K. Tae-Hun, and S. Nak-Ju (2003) Antioxidants and free radical scavenging activity of Phellinus baumiiPhellinus of Hymenochaetaceae extracts. Food Chem. 82: 593–597.

    Article  Google Scholar 

  24. Xiao-Juan, D., Z. Wei-Wei, L. Xiao-Ming, and W. Bin-Gui (2006) Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chem. 95: 37–43.

    Article  Google Scholar 

  25. Yasantha, A., L. Ki-Wan, S. ChoonBok, A. Chang-Bum, S. Tai-Sun, C. Yong-Jun, S. Fereidoon, and J. You-Jin (2003) Potential antioxidant activity of marine red alga Grateloupia filicina extracts. J. Food Lipids 10: 251–265.

    Article  Google Scholar 

  26. Duthie, S. J., A., Ma, M. A. Ross, and A. R. Collins (1996) Antioxidant supplementation decreases oxidative DNA damage in human lymphocytes. Cancer Res. 56: 1291–1295.

    CAS  Google Scholar 

  27. Fedoroff, S. (2001) Protocols for neural cell culture. A. Richardson (Ed.). Springer Science & Business Media, NY, USA.

  28. Edgar, C. -E., O. -B Rocio, G. -C. Carlos Angel, B. -V. Vanessa, P. -R. Marisol, O. R. Roxana, and F. -C. Margarita (2010) Phycobiliproteins from Pseudanabaena tenuis rich in c-phycoerythrin protect against HgCl2-caused oxidative stress and cellular damage in the kidney. J. Appl. Phycol. 22: 495–501.

    Article  Google Scholar 

  29. Hirata, T., M. Ooike, T. Tsunomura, H. Arai, and M. Sakaguchi (1998) Antioxidative activities of chromoproteins isolated from liver. Rev. Farm. Bioquim. Univ. S. Paulo 34:194.

    Google Scholar 

  30. Soni, B., P. Visavadiya, and D. Madamwar (2009) Attenuation of diabetic complecations by C-phycoerythrin in rats: Antioxidant activity of C-phycoerythrin including copper-induced lipoprotein and serum oxidation. Br. J. Nutr. 102: 102–109.

    Article  CAS  Google Scholar 

  31. Hansen, J. and B. Peter (2010) A cellular viability assay to monitor drug toxicity. Meth. Mol. Biol. 648: 303–311.

    Article  CAS  Google Scholar 

  32. Zhu, D., K. S. Tan, X. Zhang, A. Y. Sun, G. Y. Sun, and J. C. Lee (2005) Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J. Cell Sci. 118: 3695-3073.

  33. Glazer, A. N. (1990) Phycoerythrin fluorescence-based assay for reactive oxygen species. Meth. Enzymol. 186: 161–168.

    Article  CAS  Google Scholar 

  34. Gorbi, S. and R. Francesco (2003) Total oxyradical scavenging capacity as an index of susceptibility to oxidative stress in marine organisms. Comments on Toxicol. 9: 303–322.

    Article  CAS  Google Scholar 

  35. Chen, Z., D. L. Kaplan, K. Yang, J. Kumar, K. A. Marx, and S. K. Tripathy (1997) Two-photon-induced fluorescence from the phycoerythrin protein. Appl. Opt. 36: 1655–1659.

    Article  CAS  Google Scholar 

  36. Zhang, Y. Z., X. L. Chen, L. S. Wang, B. C. Zhou, J. A. He, D. X. Shi, and S. J Pang (2002) In vitro assembly of R-phycoerythrin from marine red alga Polysiphonia urceolata. Sheng wu hua xue yu sheng wu wu li xue bao (Shanghai) 34: 99–103.

    Google Scholar 

  37. Bermejo, R., E. M. Talavera, and J. M. Alvarez-Pez (2011) Chromatographic purification and characterization of B-phycoerythrin from Porphyridium cruetum: Semipreparative high-performance liquid chromatographic separation and characterization of its subunits. J. Chromatogr. A 917: 135–145.

    Article  Google Scholar 

  38. Kuda, T., M. Tsunekawa, H. Goto, and Y. Araki (2005) Antioxidant properties of four edible algae harvested in the Noto Peninsula, Japan. J. Food Compost. Anal. 18: 625–633.

    Article  CAS  Google Scholar 

  39. Soni, B., P. V. Nishant, and M. Datta (2009) Attenuation of diabetic complications by C-phycoerythrin in rats: Antioxidant activity of C-phycoerythrin including copper-induced lipoprotein and serum oxidation. Br. J. Nut. 102: 102–109.

    Article  CAS  Google Scholar 

  40. Neelma, M., S. Nadia, N. Shagufta, and M. Farkhanda (2013) Alage: A potent antioxidant source. Sky J. Microbiol. Res. 1: 22–31.

    Google Scholar 

  41. Kim, S. K. (2015) Marine Algae Extracts: Processes, Products, and Applications. Vol. 2. C. Katarzyna (Ed.). John Wiley & Sons, NJ, USA.

    Book  Google Scholar 

  42. Sonani, R. R., R. P. Rastogi, N. K. Singh, J. Thadani, P. J. Patel, J. Kumar, A. K. Tiwari, R. V. Devkar, and D. Madamwar (2014) Phycoerythrin averts intracellular ROS generation and physiological functional decline in eukaryotes under oxidative stress. Protoplasma DOI:10.1007/s00709-016-0996-5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa Sung Shin.

Additional information

The first two authors have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, SM., Park, J.S., Shim, H.J. et al. Antioxidative effect of phycoerythrin derived from Grateloupia filicina on rat primary astrocytes. Biotechnol Bioproc E 21, 676–682 (2016). https://doi.org/10.1007/s12257-016-0369-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0369-0

Keywords

Navigation