Skip to main content
Log in

Drosophila melanogaster S2 cells are more suitable for the production of recombinant COX-1 than Trichoplusia ni BTI TN-5B1-4 cells

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Recombinant human cyclooxygenase-1 (COX-1) was expressed from stably transfected Trichoplusia ni BTI TN-5B1-4 (TN-5B1-4) and Drosophila melanogaster S2 cells. Two kinds of recombinant COX-1 with molecular weights (MWs) of 68 and 74 kDa were expressed in the intracellular fractions of stably transfected TN-5B1-4/ COX-1 and S2/COX-1 cells, due to glycosylation. The recombinant COX-1 secreted to medium fractions has a MW of 72 kDa. Recombinant COX-1 in the intracellular fractions was purified to homogeneity using a one-step Ni-NTA affinity fractionation method. Recombinant COX-1 purified from TN-5B1-4/COX-1 and S2/COX-1 cells contained 11,389 and 33,850 Unit/mg of specific peroxidase activity, respectively. The maximum productions of intracellular recombinant COX-1 were 1.7 and 5.6 μg/107 cells in the T-flask cultures of TN-5B1-4/COX-1 and S2/COX-1 cells, respectively. Taken together, our findings indicate that S2 cells can be more suitable system to produce recombinant COX-1, compared to TN-5B1-4 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, W. L. and L. J. Marnett (1991) Prostaglandin endoperoxide synthase: Structure and catalysis. Biochem. Biophy. Acta 1083: 1–17.

    Article  CAS  Google Scholar 

  2. Vane, J. R., Y. S. Bakhle, and R. M. Botting (1998) Cyclooxygenase 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38: 97–120.

    Article  CAS  Google Scholar 

  3. Lipsky, P. E. (1999) Role of cyclooxygenase-1 and-2 in health and disease. Am. J. Orthop. 28: 8–12.

    CAS  Google Scholar 

  4. Dubois, R. N., S. B. Abramson, L. Crofford, R. A. Gupta, L. S. Simon, L. B. Van De Putte, and P. E. Lipsky (1998) Cyclooxygenase in biology and disease. FASEB J. 12: 1063–1073.

    CAS  Google Scholar 

  5. O’Neill, G. P. and A. W. Ford-Hutchinson (1993) Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Lett. 330: 156–160.

    Google Scholar 

  6. Yasojima, K., C. Schwab, E. G. McGeer, and P. L. McGeer (1999) Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs. Brain Res. 830: 226–236.

    Article  CAS  Google Scholar 

  7. Li, C. J., J. K. Chang, G. J. Wang, and M. L. Ho (2011) Constitutively expressed COX-2 in osteoblasts positively regulates Akt signal transduction via suppression of PTEN activity. Bone 48: 286–297.

    Article  CAS  Google Scholar 

  8. Shamma, A., H. Yamamoto, Y. Doki, J. Okami, M. Kondo, Y. Fujiwara, M. Yano, M. Inoue, N. Matsuura, H. Shiozaki, and M. Monden (2000) Up-regulation of cyclooxygenase-2 in squamous carcinogenesis of the esophagus. Clin. Cancer Res. 6: 1229–1238.

    CAS  Google Scholar 

  9. Chandrasekharan, N.V., H. Dai, K. L. Roos, N. K. Evanson, J. Tomsik, T. S. Elton, and D. L. Simmons (2002) COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression. Proc. Natl. Acad. Sci. USA 99: 13926–13931.

    Article  CAS  Google Scholar 

  10. Smith, W. L., R. M. Garavito, and D. L. DeWitt (1996) Prostaglandin endoperoxide H synthase (cyclooxygenase)-1 and-2. J. Biol. Chem. 271: 33157–33160.

    Article  CAS  Google Scholar 

  11. Pfeifer, T. A. (1998) Expression of heterologous proteins in stable insect cell culture. Curr. Opin. Biotechnol. 9: 518–521.

    Article  CAS  Google Scholar 

  12. Luckow, V. A. (1995) Protein production and processing from baculovirus expression vectors. pp. 51–90. In: M. L. Shuler, H. A. Wood, R. R. Granados, and D. A. Hammer (eds.). Baculovirus Expression Systems and Biopesticides. Wiley-Liss, NY, USA.

    Google Scholar 

  13. Drugmand, J. C., Y. J. Scheneider, and S. N. Agathos (2012) Insect cells as factories for biomanufacturing. Biotechnol. Adv. 30: 1140–1157.

    Article  CAS  Google Scholar 

  14. Hunter, J. C., N. M. Myres, and D. L. Simmons (2010) Expression of cyclooxygenase isoforms in the baculovirus expression system. Methods Mol Biol. 644: 45–54.

    Article  CAS  Google Scholar 

  15. Chang, K. H., J. M. Lee, J. Hwang-Bo, K. H. Yoo, B. H. Shon, J. M. Yang, and I. S. Chung (2007) Expression of recombinant cyclooxygenase 1 in Drosophila melanogaster S2 cells transformed with human β1,4-galactosyltransferase and Galβ1,4-GlcNAc α2,6-sialyltransferase. Biotechnol. Lett. 29: 1803–1809.

    Article  CAS  Google Scholar 

  16. Chang, K. H., J. H. Park, H. Y. Chung, J. Hwang-Bo, H. H. Lee, D. H. Kim, Y. Soh, and I. S. Chung (2012) Enhanced expression of recombinant human cyclooxygenase 1 from stably-transfected Drosophila melanogaster S2 cells by dimethyl sulfoxide is mediated by up-regulation of nitric oxide synthase and transcription factor Kr-h1. Biotechnol. Lett. 34: 1243–1250.

    Article  CAS  Google Scholar 

  17. Hegedus, D. D., T. A. Pfeifer, J. Hendry, D. A. Theilmann, and T. A. Grigliatti (1998) A series of broad host range shuttle vectors for constitutive and inducible expression of heterologous proteins in insect cell lines. Gene 207: 241–249.

    Article  CAS  Google Scholar 

  18. Pfeifer, T. A., D. D. Hegedus, T. A. Grigliatti, and D. A. Theilmann (1997) Baculovirus immediate-early promoter-mediated expression of the zeocin™ resistance gene for use as a dominant selectable marker in dipteran and lepidopteran insect cell lines. Gene 188: 183–190.

    Article  CAS  Google Scholar 

  19. Angelichio, P. L., J. A. Beck, H. Johansen, and M. Ivey-Hoyle (1991) Comparison of several promoters and polyadenylation signals for use in heterologous gene expression in cultured Drosophila cells. Nucleic Acids Res. 19: 5037–5043.

    Article  CAS  Google Scholar 

  20. Bunch, T. A., Y. Grinblat, and L. S. Goldstein (1988) Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res. 16: 1043–1061.

    Article  CAS  Google Scholar 

  21. Chang, K. H., J. M. Lee, H. K. Jeon, and I. S. Chung (2004) Improved production of recombinant tumstatin in stably transformed Trichoplusia ni BTI Tn 5B1-4 cells. Protein Expr. Purif. 35: 69–75.

    Article  CAS  Google Scholar 

  22. Petrovic, N. and M. Murray (2010) Using N,N,N′,N′-tetramethylp- phenylenediamine (TMPD) to assay cyclooxygenase activity in vitro. Methods Mol. Biol. 594: 129–140.

    Article  CAS  Google Scholar 

  23. Moraes, A. M., S. A. Jorge, R. M. Astray, C. A. Suazo, C. E. Calderón Riquelme, E. F. Augusto, A. Tonso, M. M. Pamboukian, R. A. Piccoli, M. F. Barral, and C. A. Pereira (2012) Drosophila melanogaster S2 cells for expression of heterologous genes: From gene cloning to bioprocess development. Biotechnol. Adv. 30: 613–628.

    Article  CAS  Google Scholar 

  24. Rollins, T. E. and W. L. Smith (1980) Subcellular localization of prostaglandin-forming cyclooxygenase in Swiss mouse 3T3 fibroblasts by electron microscopic immunocytochemistry. J. Biol. Chem. 255: 4872–4875.

    CAS  Google Scholar 

  25. Reiger, M. K., D. L. DeWitt, M. S. Schindler, and W. L. Smith (1993) Subcellular localization of prostaglandin endoperoxide synthase-2 in murine 3T3 cells. Arch. Biochem. Biophysic. 301: 439–444.

    Article  CAS  Google Scholar 

  26. Otto, J. C., D. L. DeWitt, and W. L. Smith (1993) N-glycosylation of prostaglandin endoperoxide synthase-1 and-2 and their orientations in the endoplasmic reticulum. J. Biol. Chem. 268: 18234–18242.

    CAS  Google Scholar 

  27. Mutsaers, J. H., H. van Halbeek, J. P. Kamerling, and J. F. Vliegenhart (1985) Determination of the structure of the carbohydrate chains of prostaglandin endoperoxide synthase from sheep. Eur. J. Biochem. 147: 569–574.

    Article  CAS  Google Scholar 

  28. März, L., F. Altmann, E. Staudacher, and V. Kubelka (1995) Protein glycosylation in insects. pp. 543–563. In: J. Montreuil, H. Schachter, and J. F. G. Vliegenthart (eds.). Glycoproteins. Elsevier Science B. V., Amsterdam, Netherlands.

    Chapter  Google Scholar 

  29. Altmann, F., E. Staudacher, I. B. Wilson, and L. Marz (1999) Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj. J. 16: 109–123.

    Article  CAS  Google Scholar 

  30. Kim, Y. K., H. S. Shin, N. Tomiya, Y. C. Lee, M. J. Betenbaugh, and H. J. Cha (2005) Production and N-glycan analysis of secreted human erythropoietin glycoprotein in stably transfected Drosophila S2 cell. Biotecnol. Bioeng. 92: 452–461.

    Article  CAS  Google Scholar 

  31. Wickham, T. J., T. Davis, R. R. Granados, M. L. Shuler, and H. A. Wood (1992) Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system. Biotechnol. Prog. 8: 391–396.

    Article  CAS  Google Scholar 

  32. Saarinen, M. A., K. A. Troutner, S. G. Gladden, C. M. Mitchell- Logean, and D. W. Murhammer (1999) Recombinant protein synthesis in Trichoplusia ni BTI-TN-5B1-4 insect cell aggregates. Biotechnol. Bioeng. 63: 612–617.

    Article  CAS  Google Scholar 

  33. Schneider, I. (1972) Cell lines derived from late embryogenic stages of Drosophila melanogaster. J. Embryol. Exp. Morphol. 27: 353–365.

    CAS  Google Scholar 

  34. Lee, J. M., K. H. Chang, J. H. Park, Y. H. Lee, and I. S. Chung (2001) Production of recombinant endostatin from stably transformed Trichoplusia ni BT1 Tn 5B1-4 cells. Biotechnol. Lett. 23: 1931–1936.

    Article  CAS  Google Scholar 

  35. Park, J. H., J. M. Lee, and I. S. Chung (1999) Production of recombinant endostatin from stably transformed Drosophila melanogaster S2 cells. Biotechnol. Lett. 21: 729–733.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Sik Chung.

Additional information

These two author’s contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, K.H., Park, JH., Hwang-Bo, J. et al. Drosophila melanogaster S2 cells are more suitable for the production of recombinant COX-1 than Trichoplusia ni BTI TN-5B1-4 cells. Biotechnol Bioproc E 19, 803–810 (2014). https://doi.org/10.1007/s12257-014-0239-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0239-6

Keywords

Navigation