Skip to main content
Log in

Anti-aging and anti-inflammation effects of natural mineral extract on skin keratinocytes

  • Articles
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, we investigated the effects of a natural mineral extract on damaged skin keratinocytes. We have focused on the possible effects of the natural mineral extract on UV-irradiated normal human skin keratinocytes. Human keratinocytes were UV-irradiated and were treated with 0.1, 1.0, or 10% of natural mineral extract. Study controls included non-UV-irradiated cells, UV-irradiated cells (no extract), and UV-irradiated cells treated with 25 nM ascorbic acid. Cell viability following UV irradiation was significantly higher in the groups treated with the natural mineral extract at doses of 0.1, 1.0, and 10% than in the control group with UV irradiation only. The UV-irradiated cells demonstrated increased secretion of laminin relative to non-irradiated controls. We found that treating these UV-irradiated keratinocytes with natural mineral extract reduced vacuole size and number, and it dose-dependently increased laminin secretion and reduced IL-2 synthesis. Also, MMP-1 and MMP-2 activity were significantly less in cells treated with natural mineral extract than in UV-irradiated controls. The UV irradiation reduced MMP-1 levels to 45±5 ng/mL from 130±5 ng/mL. In addition, MMP-2 production in keratinocytes was significantly reduced by 11±1 ng/mL compared to the UV-irradiation control. In conclusion, the results of this work suggest that natural mineral extract has effects on keratinocytes damaged by UV exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lam, Do, P. U., D. H. Nguyen, and E. K. Kim (2008) Mechanism of skin pigmentation. Biotechnol. Bioprocess Eng. 13: 383–395.

    Article  CAS  Google Scholar 

  2. Lawrence, N. (2000) New and emerging treatments for photoaging. Dermatol. Clin. 18: 99–112.

    Article  CAS  Google Scholar 

  3. Castanet, J. and J. P. Ortonne (1997) Pigmentary changes in aged and photoaged skin. Arch. Dermatol. 133: 1296–1299.

    Article  CAS  Google Scholar 

  4. Griffiths, C., A. N. Russman, G. Majmudar, R. S. Singer, T. A. Hamilton, and J. J. Voorhees (1993) Restoration of collagen formation in photodamaged human skin by tretinoin (retinoic acid). N. Engl. J. 329: 530–535.

    Article  CAS  Google Scholar 

  5. Wlaschek, M. (1994) UVA-induced autocrine stimulation of fibroblast-derived collagenase/MMP-1 by interrelated loops of interleukin-1 and interleukin-6. Photochem. Photobiol. 59: 550–556.

    Article  CAS  Google Scholar 

  6. Chiu, A. and A. B. Kimball (2003) Topical vitamins, minerals, and botanical ingredients as modulators of environmental and chronological skin damage. Br. J. Dermatol. 149: 681–691.

    Article  CAS  Google Scholar 

  7. Phillips, C. L., S. Tajima, and S. R. Pinnell (1992) Ascorbic acid and transforming growth factor-beta 1 increase collagen biosynthesis via different mechanisms: coordinate regulation of pro alpha 1(I) and Pro alpha 1(III) collagens. Arch. Biochem. Biophys. 295: 397–403.

    Article  CAS  Google Scholar 

  8. Colven, R. M. and S. R. Pinnell (1996) Topical vitamin C in aging. Clin. Dermatol. 14: 227–234.

    Article  CAS  Google Scholar 

  9. Geesin, J. C. (1988) Ascorbic acid specifically increases type I and type III procollagen messenger RNA levels in human skin fibroblast. J. Invest. Dermatol. 90: 420–424.

    Article  CAS  Google Scholar 

  10. Soroka, Y., Z. Ma’or, Y. Leshem, L. Verochovsky, R. Neuman, F. M. Bregegere, and Y. Milner (2008) Aged keratinocyte phenotyping: morphology, biochemical markers and effects of Dead Sea minerals. Exp. Gerontol. 43: 947–957.

    Article  CAS  Google Scholar 

  11. Kim, S. K., Y. D. Ravichandran, B. K. Sher, and Y. T. Kim (2008) Prospective of the cosmeceuticals derived from marine organisms. Biotechnol. Bioprocess Eng. 13: 511–523.

    Article  CAS  Google Scholar 

  12. Chiarini, A. (2006) Comano’s (Trentino) thermal water interferes with the expression and secretion of vascular endothelial growth factor — a protein isoforms by cultured human psoriatic keratinocytes: a potential mechanism of its anti-psoriatic action. Int. J. Mol. Med. 18: 17–25.

    Google Scholar 

  13. Altvater, F., S. Striemer, S. Gruner, A. Zwirner, and N. Sönnichsen (1992) The influence of a photobalneotherapy on ATPase positive epidermal Langerhans cells — an experimental study. Dermatol. Monatsschr. 178: 416–421.

    Google Scholar 

  14. Wollenberg, A., A. Richard, and T. Bieber (1992) In vitro effect of the thermal water from La Roche-Posay on the stimulatory capacity of epidermal Langerhans cells. Eur. J. Dermatol. 2: 128–129.

    Google Scholar 

  15. Ludwig, P. (1995) Inhibition of eicosanoid formation in human polymorphonuclear leukocytes by high concentrations of magnesium ions. Biol. Chem. Hoppe Seyler. 376: 739–744.

    CAS  Google Scholar 

  16. Celerier, P., P. Litoux, B. Dreno, and A. Richard (1995) Modulatory effects of selenium and strontium salts on keratinocyte-derived inflammatory cytokines. Arch. Dermatol. Res. 286: 680–682.

    Article  Google Scholar 

  17. Kim, I. S., C. Sun-Young, M. J. Chung, T. H. Kim, and N. J. Sung (2005) Effect of ion chip and yellow soil on growth and physicochemical characteristics of soybean sprouts. Korean J. Food Nutr. 18: 316–324.

    Google Scholar 

  18. Kang, S. C. and D. G. Lee (1999) Effect of loess on the mycelial pellet formation of phosphate dissolving fungus, Penicillium sp. GL-101 in the submerged culture. Korean J. Biotechnol. Bioeng. 14: 337–341.

    Google Scholar 

  19. Kang, S. C. and S. Y. Shin (2002) Effects of loess on the mycelial pellet formation of phosphate-solubilizing fungus, Aspergillus sp. PS-104 in the submerged culture. J. Korean Soc. Appl. Biol. Chem. 50: 77–81.

    Google Scholar 

  20. Cho, J. S., H. W. Lee, S. J. Lee, and D. I. Kim (2007) Comparative proteomic analysis for hCTLA41g production in transgenic rice suspension cultures using twodimensional difference gel electrophoresis. Biotechnol. Bioprocess Eng. 12: 333–339.

    Article  CAS  Google Scholar 

  21. Takashima, A. and P. R. Bergstresser (1996) Impact of UVB radiation on the epidermal cytokine network. Photochem. Photobiol. 63: 397–400.

    Article  CAS  Google Scholar 

  22. Proksch, E. (2005) Bathing in a magnesium-rich Dead Sea salt solution improves skin barrier function, enhances skin hydration, and reduces inflammation in atopic dry skin. Int. J. Dermatol. 44: 151–157.

    Article  Google Scholar 

  23. Hodak, E., A. Gottlieb, T. Segal, L. Maron, M. Lotem, M. Feinmesser, and M. David (2004) An open trial of climatotherapy at the Dead Sea for patch-stage mycosis fungoides. J. Am. Acad. Dermatol. 51: 33–38.

    Article  Google Scholar 

  24. Even-Paz, Z. and J. Shani (1989) The dead sea and psoriasis. Historical and geographic background. Int. J. Dermatol. 28: 1–9.

    Article  CAS  Google Scholar 

  25. Abels, D. J., T. Rose, and J. E. Bearman (1995) Treatment of psoriasis at a Dead Sea dermatology clinic. Int. J. Dermatol. 34: 134–137.

    Article  CAS  Google Scholar 

  26. Harari, M. and Shani, J. (1997) Demographic evaluation of successful antipsoriatic climatotherapy at the Dead Sea (Israel) DMZ Clinic. Int. J. Dermatol. 36: 304–308.

    Article  CAS  Google Scholar 

  27. Shani, J., M. Harari, E. Hristakieva, V. Seidl, and J. G. Bar (1999) Dead-sea climatotherapy versus other modalities of treatment for psoriasis: comparative costeffectiveness. Int. J. Dermatol. 38: 252–262.

    Article  CAS  Google Scholar 

  28. Hodak, E., A. Gottlieb, T. Segal, Y. Politi, L. Maron, J. Sulkes, and M. David (2003) Climatotherapy at the Dead Sea is a remittive therapy for psoriasis: combined effects on epidermal and immunologic activation. J. Am. Acad. Dermatol. 49: 451–457.

    Article  Google Scholar 

  29. Choi, J. and A. Y. Lee (2003) Comparison of 5% NaCl solution and UVB to mineral oil and UVB in patients with atopic dermatitis. Korean J. Dermatol. 41: 1286–1290.

    Google Scholar 

  30. Farrukh, A. F. A. Q., V. M. Adhami, and H. Mukhtar (2005) Photochemoprevention of ultraviolet B signaling and photocarcinogenesis. Mutation Research. Fundamental and Molecular Mechanisms of Mutagenesis. 571: 153–173.

    Google Scholar 

  31. Afaq, F., A. Malik, D. Syed, D. Maes, M. Matsui, and H. Mukhtar (2005) Pomegranate fruit extract modulates UV-B-mediated phosphorylation of mitogen-activated protein kinases and activation of nuclear factor kappa B in normal human epidermal keratinocytes paragraph sign. Photochem. Photobiol. 81: 38–45.

    Article  CAS  Google Scholar 

  32. de Guruiji, F. R. (2002) Photocarcinogenesis: UVA vs. UVB Radiation. Skin pharmacol. appli. physio. 15: 316–320.

    Article  Google Scholar 

  33. Hwang, S. H., M. H. Kim, I. H. Yang, J. Y. Bahk, and H. Han (2007) Analysis of cytokines in umbilical cord blood-derived multipotent stem cell. Biotechnol. Bioprocess Eng. 12: 32–38.

    Article  CAS  Google Scholar 

  34. Wang, X. Y. and Z. G. Bi (2006) UVB-irradiated human keratinocytes and interleukin-1alpha indirectly increase MAP kinase/AP-1 activation and MMP-1 production in UVA-irradiated dermal fibroblasts. Chin. Med. J. 119: 827–831.

    CAS  Google Scholar 

  35. Fisher, G. J., K. Sewon, J. Varani, Z. Bata-Csorgo, Y. Wan, S. Datta, and J. J. Voorhees (2002) Mechanisms of photoaging and chronological skin aging. Arch. Dermatol. 138: 1462–1470.

    Article  CAS  Google Scholar 

  36. Werb, Z. (1997) ECM and cell surface proteolysis: regulating cellular ecology. Cell. 91: 439–442.

    Article  CAS  Google Scholar 

  37. Kahari, V. M. and U. Saarialho-Kere (1997) Matrix metalloproteinases in skin. Exp. Dermatol. 6: 199–213.

    Article  CAS  Google Scholar 

  38. Curran, S. and G. I. Murray (1999) Matrix metalloproteinases in tumour invasion and metastasis. J. Pathol. 189: 300–308.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Keug Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, SH., Seo, YK., Youn, MY. et al. Anti-aging and anti-inflammation effects of natural mineral extract on skin keratinocytes. Biotechnol Bioproc E 14, 861–868 (2009). https://doi.org/10.1007/s12257-009-0001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-0001-0

Keywords

Navigation