Skip to main content

Advertisement

Log in

Glioma Stem Cells: Markers, Hallmarks and Therapeutic Targeting by Metformin

  • Review
  • Published:
Pathology & Oncology Research

Abstract

Malignant gliomas are among the deadliest primary brain tumors. Despite multimodal therapy and advances in chemotherapy, imaging, surgical and radiation techniques, these tumors remain virtually incurable. Glioma stem cells may be responsible for resistance to traditional therapies and tumor recurrence. Therefore, elimination of glioma stem cells may be crucial for achieving therapeutic efficacy. Metformin, a small molecule drug widely used in the therapy of type 2 diabetes, has shown significant anti-tumor effects in patients with breast cancer and prostate cancer. Recent preclinical data suggest that metformin also has therapeutic effects against glioma. Here we review the markers and hallmarks of glioma stem cells, and the molecular mechanisms involved in therapeutic targeting of glioma stem cells by metformin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  PubMed  CAS  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  PubMed  CAS  Google Scholar 

  3. Westphal M, Lamszus K (2011) The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 12:495–508

    Article  PubMed  CAS  Google Scholar 

  4. Gilbertson RJ, Rich JN (2007) Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7:733–736

    Article  PubMed  CAS  Google Scholar 

  5. Frank RT, Aboody KS, Najbauer J (2011) Strategies for enhancing antibody delivery to the brain. Biochim Biophys Acta 1816:191–198

    PubMed  CAS  Google Scholar 

  6. Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6:583–592

    Article  PubMed  CAS  Google Scholar 

  7. Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C et al (2011) Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 12:169–182

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Norden AD, Young GS, Setayesh K, Muzikansky A, Klufas R et al (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurol 70:779–787

    Article  CAS  Google Scholar 

  9. Visvader JE (2011) Cells of origin in cancer. Nature 469:314–322

    Article  PubMed  CAS  Google Scholar 

  10. Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10:717–728

    Article  PubMed  CAS  Google Scholar 

  11. Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12:133–143

    PubMed  CAS  Google Scholar 

  12. Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJ (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5:899–904

    Article  PubMed  CAS  Google Scholar 

  13. Filatova A, Acker T, Garvalov BK (2013) The cancer stem cell niche (s): the crosstalk between glioma stem cells and their microenvironment. Biochim Biophys Acta 1830:2496–2508

    Article  PubMed  CAS  Google Scholar 

  14. Binello E, Germano IM (2011) Targeting glioma stem cells: a novel framework for brain tumors. Cancer Sci 102:1958–1966

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Facchino S, Abdouh M, Bernier G (2011) Brain cancer stem cells: current status on glioblastoma multiforme. Cancers (Basel) 3:1777–1797

    Article  CAS  Google Scholar 

  16. Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6:425–436

    Article  PubMed  CAS  Google Scholar 

  17. Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F et al (2006) Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 13:1238–1241

    Article  PubMed  CAS  Google Scholar 

  18. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  PubMed  CAS  Google Scholar 

  19. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  PubMed  CAS  Google Scholar 

  20. Singh SK, Clarke ID, Hide T, Dirks PB (2004) Cancer stem cells in nervous system tumors. Oncogene 23:7267–7273

    Article  PubMed  CAS  Google Scholar 

  21. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  22. Persano L, Rampazzo E, Basso G, Viola G (2013) Glioblastoma cancer stem cells: role of the microenvironment and therapeutic targeting. Biochem Pharmacol 85:612–622

    Article  PubMed  CAS  Google Scholar 

  23. Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10:319–331

    Article  PubMed  CAS  Google Scholar 

  24. Quinn BJ, Kitagawa H, Memmott RM, Gills JJ, Dennis PA (2013) Repositioning metformin for cancer prevention and treatment. Trends Endocrinol Metab 24:469–480

    Article  PubMed  CAS  Google Scholar 

  25. Dunaif A (2008) Drug insight: insulin-sensitizing drugs in the treatment of polycystic ovary syndrome–a reappraisal. Nat Clin Pract Endocrinol Metab 4:272–283

    Article  PubMed  CAS  Google Scholar 

  26. Pollak M (2012) The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 12:159–169

    PubMed  CAS  Google Scholar 

  27. Emami Riedmaier A, Fisel P, Nies AT, Schaeffeler E, Schwab M (2013) Metformin and cancer: from the old medicine cabinet to pharmacological pitfalls and prospects. Trends Pharmacol Sci 34:126–135

    Article  PubMed  Google Scholar 

  28. Bost F, Sahra IB, Le Marchand-Brustel Y, Tanti JF (2012) Metformin and cancer therapy. Curr Opin Oncol 24:103–108

    Article  PubMed  CAS  Google Scholar 

  29. Pernicova I, Korbonits M (2014) Metformin–mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 10:143–156

    Article  PubMed  CAS  Google Scholar 

  30. Inzucchi SE (2002) Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA 287:360–372

    Article  PubMed  CAS  Google Scholar 

  31. Witters LA (2001) The blooming of the French lilac. J Clin Invest 108:1105–1107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Isakovic A, Harhaji L, Stevanovic D, Markovic Z, Sumarac-Dumanovic M et al (2007) Dual antiglioma action of metformin: cell cycle arrest and mitochondria-dependent apoptosis. Cell Mol Life Sci 64:1290–1302

    Article  PubMed  CAS  Google Scholar 

  33. Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9:563–575

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Liu X, Chhipa RR, Pooya S, Wortman M, Yachyshin S et al (2014) Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc Natl Acad Sci U S A 111:E435–444

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Würth R, Pattarozzi A, Gatti M, Bajetto A, Corsaro A et al (2013) Metformin selectively affects human glioblastoma tumor-initiating cell viability: a role for metformin-induced inhibition of Akt. Cell Cycle 12:145–156

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sunayama J, Sato A, Matsuda K, Tachibana K, Watanabe E et al (2011) FoxO3a functions as a key integrator of cellular signals that control glioblastoma stem-like cell differentiation and tumorigenicity. Stem Cells 29:1327–1337

    PubMed  CAS  Google Scholar 

  37. Sato A, Sunayama J, Okada M, Watanabe E, Seino S et al (2012) Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK. Stem Cells Transl Med 1:811–824

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Łabuzek K, Suchy D, Gabryel B, Bielecka A, Liber S et al (2010) Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol Rep 62:956–965

    Article  PubMed  Google Scholar 

  39. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330:1304–1305

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bowker SL, Majumdar SR, Veugelers P, Johnson JA (2006) Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 29:254–258

    Article  PubMed  Google Scholar 

  41. Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C et al (2009) Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 27:3297–3302

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Chlebowski RT, McTiernan A, Wactawski-Wende J, Manson JE, Aragaki AK et al (2012) Diabetes, metformin, and breast cancer in postmenopausal women. J Clin Oncol 30:2844–2852

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K (2009) Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69:7507–7511

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Hirsch HA, Iliopoulos D, Struhl K (2013) Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci U S A 110:972–977

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Margel D, Urbach DR, Lipscombe LL, Bell CM, Kulkarni G et al (2013) Metformin use and all-cause and prostate cancer-specific mortality among men with diabetes. J Clin Oncol 31:3069–3075

    Article  PubMed  CAS  Google Scholar 

  46. Aboody KS, Najbauer J, Metz MZ, D’Apuzzo M, Gutova M et al (2013) Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies. Sci Transl Med 5:184ra159

    Article  Google Scholar 

  47. Lee C, Raffaghello L, Brandhorst S, Safdie FM, Bianchi G et al (2012) Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med 4:124ra127

    Article  Google Scholar 

  48. Clarke J, Penas C, Pastori C, Komotar RJ, Bregy A et al (2013) Epigenetic pathways and glioblastoma treatment. Epigenetics 8:785–795

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Najbauer J, Huszthy PC, Barish ME, Garcia E, Metz MZ et al (2012) Cellular host responses to gliomas. PLoS One 7:e35150

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Dimov I, Tasić-Dimov D, Conić I, Stefanovic V (2011) Glioblastoma multiforme stem cells. Sci World J 11:930–958

    Article  CAS  Google Scholar 

  51. Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2012) The brain tumor microenvironment. Glia 60:502–514

    Article  PubMed  Google Scholar 

  52. Cheng L, Huang Z, Zhou W, Wu Q, Donnola S et al (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153:139–152

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Kourelis TV, Siegel RD (2012) Metformin and cancer: new applications for an old drug. Med Oncol 29:1314–1327

    Article  PubMed  CAS  Google Scholar 

  54. Del Barco S, Vazquez-Martin A, Cufí S, Oliveras-Ferraros C, Bosch-Barrera J et al (2011) Metformin: multi-faceted protection against cancer. Oncotarget 2:896–917

    PubMed  PubMed Central  Google Scholar 

  55. Rattan R, Ali Fehmi R, Munkarah A (2012) Metformin: an emerging new therapeutic option for targeting cancer stem cells and metastasis. J Oncol 2012:928127

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

J.N. is grateful to Dr. Karen S. Aboody (Department of Neurosciences, City of Hope National Medical Center and Beckman Research Institute, Duarte, California) for her generous support over the years during which the author has been doing research on stem cell-based glioma therapies in her laboratory, as well as for the financial support by the Rosalinde and Arthur Gilbert Foundation, STOP CANCER, and the California Institute for Regenerative Medicine (CIRM, DR1-01421), awarded to Dr. Aboody. N.K. and P.N. acknowledge the generous financial support by the European Union Hungary-Croatia IPA Cross-border Co-operation Programme, HUHR/1001/2.1.3/0007 CABCOS 2 Project. The authors apologize to scientists whose important contributions to cancer and glioma biology and research on metformin have not been cited because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Najbauer.

Additional information

Author contributions

JN, Conception, design and writing of the manuscript, Guarantor; NK, Co-writing and critically revising the article; PN, Conception, design, co-writing and critically revising the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najbauer, J., Kraljik, N. & Németh, P. Glioma Stem Cells: Markers, Hallmarks and Therapeutic Targeting by Metformin. Pathol. Oncol. Res. 20, 789–797 (2014). https://doi.org/10.1007/s12253-014-9837-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-014-9837-z

Keywords

Navigation