Skip to main content
Log in

Confocal Microscopy of Epithelial and Langerhans Cells of the Cornea in Patients Using Travoprost Drops Containing Two Different Preservatives

  • Research
  • Published:
Pathology & Oncology Research

Abstract

The recently developed confocal cornea microscopy offers the opportunity to examine pathologies of the cornea and to gain insight into the activity of innate immunity. We aimed to investigate the corneal epithelial and Langerhans cell (LC) densities along with dry eye parameters in primary open-angle glaucoma (POAG) subjects, treated with either of two commercially available travoprost 0.004 % topical medications containing different preservatives. (1: benzalkonium chloride 0.015 % (TravBAK) and 2: polyquaternium-1 (PQ) 0.001 % (TravPQ). Consecutive case series of nineteen POAG patients on TravBAK (mean age: 64.8 ± 13.6 years), nineteen POAG patients on TravPQ (mean age: 66.8 ± 11.3 years) and nineteen age-matched healthy control subjects (63.8 ± 8.2 years). Ocular surface disease index (OSDI), lid parallel conjunctival folds (LIPCOF), Schirmer test (ST) and tear break up time (TBUT) were assessed, and then corneal epithelial and LC densities were investigated with confocal microscopy. Tear production was significantly reduced in both glaucoma patient groups compared to healthy individuals (p < 0.05). TBUT was significantly reduced and epithelial cell densities were significantly greater in patients treated with TravBAK compared to healthy individuals (p < 0.05 for all). LC densities were greater in both glaucoma groups compared to control subjects (p < 0.05 for all). Travoprost therapy may compromise ocular surface. The limited alertness of the corneal immune system found in patients with TravPQ can be considered as indicators of a less disturbed ocular surface and better controlled corneal homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Martone G, Frezzotti P, Tosi GM, Traversi C, Mittica V, Malandrini A, Pichierri P, Balestrazzi A, Motolese PA, Motolese I, Motolese E (2009) An in vivo confocal microscopy analysis of effects of topical antiglaucoma therapy with preservative on corneal innervation and morphology. Am J Ophthalmol 147:725–735

    Article  PubMed  Google Scholar 

  2. Epstein SP, Chen D, Asbell PA (2009) Evaluation of biomarkers of inflammation in response to benzalkonium chloride on corneal and conjunctival epithelial cells. J Ocul Pharmacol and Ther 25:415–424

    Article  CAS  Google Scholar 

  3. Noecker RJ, Herrygers LA, Anwaruddin R (2004) Corneal and conjunctival changes caused by commonly used glaucoma medications. Cornea 23:490–496

    Article  PubMed  Google Scholar 

  4. Whitson JT, Petroll WM (2012) Corneal epithelial cell viability following exposure to ophthalmic solutions containing preservatives and/or antihypertensive agents. Adv Ther 29:874–888

    Article  CAS  PubMed  Google Scholar 

  5. Horsley MB, Kahook MY (2009) Effects of prostaglandin analog therapy on the ocular surface of glaucoma patients. Clin Ophthalmol 3:291–295

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Labbé A, Pauly A, Liang H, Brignole-Baudouin F, Martin C, Warnet JM, Baudouin C (2006) Comparison of toxicological profiles of benzalkonium chloride and polyquaternium-1: an experimental study. J Ocul Pharmacol 22:267–278

    Article  Google Scholar 

  7. Aptel F, Cucherat M, Denis P (2008) Efficacy and tolerability of prostaglandin analogs: a meta-analysis of randomized controlled clinical trials. J Glaucoma 17:667–673

    Article  PubMed  Google Scholar 

  8. Hamrah P, Huq SO, Liu Y, Zhang Q, Dana MR (2003) Corneal immunity is mediated by heterogeneous population of antigen-presenting cells. J Leuk Biol 74:172–178

    Article  CAS  Google Scholar 

  9. Hazlett LD, McClellan SM, Hume EB, Dajcs JJ, O’Callaghan RJ (1999) Willcox, M.D. Extended wear contact lens wear usage induces Langerhans cell migration into cornea. Exp Eye Res 69:575–577

    Article  CAS  PubMed  Google Scholar 

  10. Zhivov A, Stave J, Vollmar B, Guthoff R (2007) In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the corneal epithelium of healthy volunteers and contact lens wearers. Cornea 26:47–54

    Article  PubMed  Google Scholar 

  11. Marsovszky L, Resch MD, Németh J, Toldi G, Medgyesi E, Kovács L, Balog A (2013) In vivo confocal microscopic evaluation of corneal Langerhans cell density, and distribution and evaluation of dry eye in rheumatoid arthritis. Innate Immun 19:348–354

    Article  PubMed  Google Scholar 

  12. Pult H, Purslow C, Murphy PJ (2011) The relationship between clinical signs and dry eye symptoms. Eye 25:502–510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Zhivov A, Stave J, Vollmar B, Guthoff R (2005) In vivo confocal microscopic evaluation of Langerhans cells density and distribution in the normal corneal epithelium. Graefe’s Arch Clin Exp Ophthalmol 243:1056–1061

    Article  Google Scholar 

  14. Marsovszky L, Németh J, Resch MD, Toldi G, Legány N, Kovács L, Balog A (2013) Corneal Langerhans cell and dry eye examinations in ankylosing spondylitis. Innate Immun Aug 19

  15. Baratz KH, Nau CB, Winter EJ, McLaren JW, Hodge DO, Herman DC, Bourne WM (2006) Effects of glaucoma medications on corneal endothelium, keratocytes, and subbasal nerves among participants in the Ocular Hypertension Treatment Study. Cornea 25:1046–1052

    Article  PubMed  Google Scholar 

  16. Ammar DA, Kahook MY (2011) Effects of benzalkonium chloride- or polyquad-preserved fixed combination glaucoma medications on human trabecular meshwork cells. Mol Vision 17:1806–1813

    CAS  Google Scholar 

  17. Guenoun JM, Baudouin C, Rat P, Pauly A, Warnet JM, Brignole-Baudouin F (2005) In vitro comparison of cytoprotective and antioxidative effects of latanoprost, travoprost, and bimatoprost on conjuctiva-derived epithelial cells. Inv Ophth Vis Sci 46:4594–4599

    Article  Google Scholar 

  18. Villani E, Beretta S, De Capitani M, Galimberti D, Viola F, Ratiglia R (2011) In vivo confocal microscopy of meibomian glands in Sjögren’s syndrome. Invest Ophthalmol Vis Sci 52:933–939

    Article  PubMed  Google Scholar 

  19. Pisella PJ, Pouliquen P, Baudouin C (2002) Prevalence of ocular symptoms and signs with preserved and preservative-free glaucoma medications. Br J Ophthalmol 86:418–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zhivov A, Kraak R, Bergter H, Kundf G, Beck R, Guthoff RF (2010) Influence of benzalkonium chloride on Langerhans cells in corneal epithelium and development of dry eye in healthy volunteers. Curr Eye Res 35:762–769

    Article  CAS  PubMed  Google Scholar 

  21. Gery I, Davies P, Derr J, Krett N, Barranger JA (1981) Relationship between production and release of lymphocyte-activating factor (interleukin-1) by murine macrophages: 1. Effects of various agents. Cell Immunol 64:293–303

    Article  CAS  PubMed  Google Scholar 

  22. Niederkorn JY, Peeler JS, Mellon J (1989) Phagocytosis of particulate antigens by corneal epithelial cells stimulate interleukin-1 secretion and migration of Langerhans cells into the central cornea. Reg Immunol 2:83–90

    CAS  PubMed  Google Scholar 

  23. Dekaris I, Zhu SN, Dana MR (1999) TNF-alpha regulates corneal Langerhans cell migration. J Immunol 162:4235–4239

    CAS  PubMed  Google Scholar 

  24. Hattori T, Chauhan SK, Lee H, Ueno H, Dana MR (2011) Characterization of Langerin-Expressing Dendritic Cell Subsets in the Normal Cornea. Invest Ophthalmol Vis Sci 52:4598–4604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zhivov A, Stachs O, Kraak R, Stave J, Guthoff RF (2006) In vivo confocal microscopy of the ocular surface. Ocul Surf 4:81–93

    Article  PubMed  Google Scholar 

  26. Liang H, Brignole-Baudouin F, Riancho L, Baudouin C (2012) Reduced in vivo ocular surface toxicity with polyquad-preserved travoprost versus benzalkonium-preserved travoprost or latanoprost ophthalmic solutions. Ophthalmic Res 48:89–101

    Article  CAS  PubMed  Google Scholar 

  27. Paimela T, Ryhänen T, Kauppinen A, Marttila L, Salminen A, Kaarniranta K (2012) The preservative polyquaternium-1 increases cytoxicity and NFkappaB linked inflammation in human corneal epithelial cells. Mol Vis 18:1189–1196

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Ranno S, Fogagnolo P, Rossetti L, Orzalesi N, Nucci P (2011) Changes in corneal parameters at confocal microscopy in treated glaucoma patients. Clin Ophthalmol 5:1037–1042

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to express our gratitude to Shikha Sud (specialist optometrist at Nottingham University, Dept. of Ophthalmology) for her valuable contribution in proofreading of the manuscript.

Conflict of Interest

None of the authors have financial, proprietary or other interest in any of the materials and instruments applied in the study. No financial support was received in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Marsovszky.

Additional information

There was no proprietary interest involved in this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsovszky, L., Resch, M.D., Visontai, Z. et al. Confocal Microscopy of Epithelial and Langerhans Cells of the Cornea in Patients Using Travoprost Drops Containing Two Different Preservatives. Pathol. Oncol. Res. 20, 741–746 (2014). https://doi.org/10.1007/s12253-014-9755-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-014-9755-0

Keywords

Navigation