Skip to main content
Log in

Novel Bench-Based Inspection Approach for Automobile Anti-Lock Braking System

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

Bench inspection approach for automobile Anti-lock Braking System (ABS) has gained research interests recently due to its high efficiency, small site occupation and insusceptibility to environment influences. The current work proposed a novel systematic bench inspection approach for ABS. In order to dynamically simulate various road adhesion coefficients, torque controllers are used for loading different torques to the drums. Furthermore, flywheels are adopted to simulate the translational inertia of the vehicle braking on road for compensating the inertial energy of ABS road experiment on the bench. The principal component analysis (PCA) is applied for accurate and efficient data analysis. The automatic evaluation of ABS is achieved by using the processed PCA data as an input to the back-propagation (BP) neural network classifier. The experiments established that the new approach can accurately simulate various road braking conditions. It can be carried out for the inspection of ABS installed in the car.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksjonov, A., Vodovozov, V. and Petlenkov, E. (2016). Design and experimentation of fuzzy logic control for an anti-lock braking system. Proc. IEEE 15th Biennial Blatic Electronics Conf. (Bec), Tallinn, Estonia.

    Google Scholar 

  • Branciforte, M., Meli, A., Muscato, G. and Porto, D. (2011). ANN and non-integer order modeling of ABS solenoid valves. IEEE Trans. Control Systems Technology 19, 3, 628–635.

    Article  Google Scholar 

  • Ciupe, V., Mărgineanu, D. and Lovasz, E.-C. (2017). Scaled test stand simulation for studying the behavior of anti-lock brake systems on bumpy roads. New Advances in Mechanisms, Mechanical Transmissions and Robotics, 46, 197–205.

    Article  Google Scholar 

  • Erkin, D., Bilin, A. G. and Tankut, A. (2014). Extremumseeking control of ABS braking in road vehicles with lateral force improvement. IEEE Trans. Control System Technology 22, 1, 230–237.

    Article  Google Scholar 

  • Fu, T., Zhao, J. B. and Liu, W. J. (2012). Multi-objective optimization of cutting parameters in high-speed milling based on grey relational analysis coupled with principal component analysis. Frontiers of Mechanical Engineering 7, 4, 445–452.

    Article  Google Scholar 

  • Hoang, T. B., Pasillas-Lépine, W., De Bernardinis, A. and Netto, M. (2014). Extended braking stiffness estimation based on a switched observer, with an application to wheel-acceleration control. IEEE Trans. Control System Technology 22, 6, 2384–2392.

    Article  Google Scholar 

  • Ko, S., Song, C. and Kim, H. (2016). Cooperative control of the motor and the electric booster brake to improve the stability of an in-wheel electric vehicle. Int. J. Automotive Technology 17, 3, 447–456.

    Article  Google Scholar 

  • Koylu, H. and Cinar, A. (2012). Experimental design of control strategy based on brake pressure changes on wet and slippery surfaces of rough road for variable damper setting during braking with activated anti-lock brake system. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 226, 10, 1303–1324.

    Google Scholar 

  • Lee, Y. and Zak, S. H. (2002). Designing a genetic neural fuzzy antilock-brake-system controller. IEEE Trans. Evolutionary Computation 6, 2, 198–211.

    Article  Google Scholar 

  • Lin, W.-C., Lin, C.-L., Hsu, P.-M. and Wu, M.-T. (2014). Realization of anti-lock braking strategy for electric scooters. IEEE Trans. Industrial Electronics 61, 6, 2826–2833.

    Article  Google Scholar 

  • Palladino, A., Fiengo, G. and Lanzo, D. (2012). A portable hardware-in-the-loop (HIL) device for automotive diagnostic control systems. ISA Trans. 51, 1, 229–236.

    Article  Google Scholar 

  • Park, J., Wang, B., Jeon, J. and Hwang, S.-H. (2011). Hardware in-the-loop simulation for ABS using 32–bit embedded system. Proc. IEEE 11th Int. Conf. Control, Automation and Systems, Gyeonggi, Korea.

    Google Scholar 

  • Patra, N. and Datta, K. (2012). Sliding mode controller for wheel-slip control of anti-lock braking system. Proc. IEEE Int. Conf. Advanced Communication Control and Computing Technologies (ICACCCT), Ramanathapuram, India.

    Google Scholar 

  • Peric, S. L., Antic, D., Milovanovic, M. B., Mitić, D. B., Milojković, M. T. and Nikolić, S. S. (2016). Quasisliding mode control with orthogonal endocrine neural network-based estimator applied in anti-lock braking system. IEEE-ASME Trans. Mechatronics 21, 2, 754–764.

    Article  Google Scholar 

  • Reza, Y. and Mojtaba, M. (2015). Design of robust speed and slip controllers for a hybrid electromagnetic brake system. IET Electric Power Applications 9, 4, 307–318.

    Article  Google Scholar 

  • Savitski, D., Ivanov, V., Augsburg, K., Shyrokau, B., Wragge-Morley, R., Pütz, T. and Barber, P. (2016). The new paradigm of an anti-lock braking system for a full electric vehicle: Experimental investigation and benchmarking. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 230, 10, 1364–1377.

    Google Scholar 

  • Velimir, C., Dragan, A. and Dušan, S. (2013). Longitudinal wheel slip control using dynamic neural networks. Mechatronics 23, 1, 135–146.

    Article  Google Scholar 

  • Wang, R. G., Wang, B. and Sun, H. (2010). Development of a single wheel test bench for anti-lock brake system. Proc. IEEE Int. Conf. Optoelectronics and Image Processing, Haikou, China.

    Google Scholar 

  • William, P. L., Antonio, L. and Mathieu, G. (2012). Design and experimental validation of a nonlinear wheel slip control algorithm. Automatica 48, 8, 1852–1859.

    Article  MathSciNet  MATH  Google Scholar 

  • Woo, J. W. and Lee, S. B. (2011). Test-bed design for evaluation of intelligent transportation systems and intelligent vehicle systems. Proc. IEEE 13th Int. Conf. Advanced Communication Technology (ICACT), Seoul, Korea.

    Google Scholar 

  • Wu, C., Duan, J. M. and Yu, Y. (2010). A hardware in loop test system for pneumatic anti-lock brake system. Int. Conf. Measuring Technology and Mechatronics Automation (ICMTMA), Changsha, China.

    Google Scholar 

  • Xu, C., Gao, S. M. and Li, M. (2017). A novel PCA-based microstructure descriptor for heterogeneous material design. Computational Materials Science, 130, 39–49.

    Article  Google Scholar 

  • Yousefi, F., Mohammadiyan, S. and Karimi, H. (2016). Application of artificial neural network and PCA to predict the thermal conductivities of nanofluids. Heat and Mass Transfer 52, 10, 2141–2154.

    Article  Google Scholar 

  • Yun, D. S., Kim, H. S. and Boo, K. S. (2011). Brake performance evaluation of ABS with sliding mode controller on a split road with driver model. Int. J. Precision Engineering and Manufacturing 12, 1, 31–38.

    Article  Google Scholar 

  • Zeng, H., Zhan, Y., Kang, X. and Lin, X. (2017). Image splicing localization using PCA-based noise level estimation. Multimedia Tools and Applications 76, 4, 4783–4799.

    Article  Google Scholar 

  • Zhang, R., Li, K., Yu, F., He, Z. and Yu, Z. (2017). Novel Electronic braking system design for EVs based on constrained nonlinear hierarchical control. Int. J. Automotive Technology 18, 4, 707–718.

    Article  Google Scholar 

  • Zhang, W., Ding, N., Chen, M., Yu, G. and Xu, X. (2011). Development of a low-cost hardware-in-the-loop simulation system as a test bench for anti-lock braking system. Chinese J. Mechanical Engineering 24, 1, 98–104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangmo Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Hao, R., Zhou, Z. et al. Novel Bench-Based Inspection Approach for Automobile Anti-Lock Braking System. Int.J Automot. Technol. 19, 825–836 (2018). https://doi.org/10.1007/s12239-018-0079-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-018-0079-z

Key words

Navigation