Skip to main content
Log in

Correlation Between Environmental Factors, a Life History Trait, Phenotypic Cohesion, and Gene Flow Levels in Natural Populations of Micropogonias furnieri: Is Salinity the Main Factor Driving Divergence?

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Marine fish are commonly considered to be characterized by limited population structure because of the absence of geographic barriers and the subsequent high levels of gene flow. In spite of this general observation, many cases of genetic geographical divergence have been observed, and natural selection has been suggested to be a causal factor. The white croaker, Micropogonias furnieri, constitutes an excellent model to test for adaptive hypotheses of population divergence, because of its wide geographic distribution along the southwestern Atlantic Ocean. The main objective of this study was to analyze the possible effect of natural selection at the genetic level, using microsatellite loci as molecular markers, and to evaluate the effect of environmental variables, trophic preferences, and phenotypic cohesion on the population structure of M. furnieri. The outlier loci analyses suggested that some of the microsatellites analyzed were under divergent selective regimens, and analyses of population genetic structure considering only these loci revealed a stronger differentiation pattern in almost cases than results compared to those obtained with the entire microsatellite data set. Results obtained also revealed a correlation between phenotypic cohesion, salinity, and temperature with genetic structure in white croakers. These results support previous works which proposed that white croakers inhabiting the Río de la Plata estuary constitute a different evolutionary unit, maintained to some extent by selective processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acuña, A., J. Verocai, and S. Marquez. 1992. Aspectos biológicos de Micropogonias furnieri (Desmarest, 1823) durante dos zafras en una pesquería artesanal al oeste de Montevideo. Revista de Biología Marina 27: 113–132.

    Google Scholar 

  • André, C., L.C. Larsson, L. Laikre, D. Bekkevold, J. Brigham, G. Carvalho, T.G. Dahlgren, et al. 2011. Detecting population structure in a high gene-flow species, Atlantic herring (Clupea harengus): direct, simultaneous evaluation of neutral vs putatively selected loci. Heredity 106: 270–280.

    Article  Google Scholar 

  • Balding, D.J., and R.A. Nichols. 1995. A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity. Genetica 96: 3–12.

    Article  CAS  Google Scholar 

  • Balkenhol, N., F. Gugerli, S. Cushman, L. Waits, A. Coulon, J. Arntzen, R. Holderegger, and H. Wagner. 2009a. Identifying future research needs in landscape genetics: where to from here? Landscape Ecology 24: 455–463.

    Article  Google Scholar 

  • Balkenhol, N., L. Waits, and R. Dezzani. 2009b. Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography 32: 818–830.

    Article  Google Scholar 

  • Beaumont, M.A., and D.J. Balding. 2004. Identifying adaptive genetic divergence among populations from genome scans. Molecular Ecology 13: 969–980.

    Article  CAS  Google Scholar 

  • Beaumont, M. A., and R. A. Nichols. 1996. Evaluating loci for use in the genetic analysis of population structure. Proceedings of the Royal Society B: Biological Sciences 263: 1619–1626.

  • Beheregaray, L., and J. Levy. 2000. (Teleostei, Atherinopsidae): evidence for speciation in an estuary of southern Brazil. Copeia 2000: 441–447.

    Article  Google Scholar 

  • Beheregaray, Luciano B., and P. Sunnucks. 2001. Fine-scale genetic structure, estuarine colonization and incipient speciation in the marine silverside fish Odontesthes argentinensis. Molecular Ecology 10: 2849–2866.

    Article  CAS  Google Scholar 

  • Beheregaray, L., P. Sunnucks, and D. Briscoe. 2002. A rapid fish radiation associated with the last sea-level changes in southern Brazil: the silverside Odontesthes perugiae complex. Proceedings of the Royal Society B: Biological Sciences 269: 65–73.

  • Bekkevold, D., C. André, T. Dahlgren, L. Clausen, E. Torstensen, H. Mosegaard, G. Carvalho, T. Christensen, E. Norlinder, and D. Ruzzante. 2005. Environmental correlates of population differentiation in Atlantic herring. Evolution 59: 2656–2668.

    Article  Google Scholar 

  • Bierne, N., J. Welch, E. Loire, F. Bonhomme, and P. David. 2011. The coupling hypothesis: why genome scans may fail to map local adaptation genes. Molecular Ecology 20: 2044–2072.

    Article  Google Scholar 

  • Bonnet, E., and Y. Van de Peer. 2002. zt: a software tool for simple and partial mantel tests. Journal of Statistical Software 7: 1–12. doi:10.18637/jss.v007.i10.

    Article  Google Scholar 

  • Boutet, I., C.L. Long Ky, and F. Bonhomme. 2006. A transcriptomic approach of salinity response in the euryhaline teleost, Dicentrarchus labrax. Gene 379: 40–50.

    Article  CAS  Google Scholar 

  • Castello, J.P. 1986. Distribucion, crecimiento y maduracion sexual de la corvina juvenil (Micropogonias furnieri) en el estuario de la Lagoa dos Patos, Brasil. Physis 44: 21–36.

    Google Scholar 

  • Cavallotto, J. 2002. Evolución holocena de la llanura costera del margen sur del Río de la Plata. Revista de la Asociacion Geologica Argentina 57: 376–388.

    Google Scholar 

  • Cavallotto, J. 2003. Late Cenozoic sea level highstands in the coastal plain of the la Plata river. GI2S Coast Research. Publica 4: 57–59.

    Google Scholar 

  • Cavallotto, J., R.A. Violante, and G. Parker. 2004. Sea-level fluctuations during the last 8600 years in the de la Plata river (Argentina). Quaternary International 114: 155–165.

    Article  Google Scholar 

  • Chapuis, M., and A. Estoup. 2007. Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24: 621–631.

    Article  CAS  Google Scholar 

  • Costa-Urrutia, P., C. Abud, E. Secchi, and E.P. Lessa. 2012. Population genetic structure and social kin associations of franciscana dolphin, Pontoporia blainvillei. The Journal of Heredity 103: 92–102.

    Article  Google Scholar 

  • Cotrina, C. 1986. Estudios biológicos sobre peces costeros con datos de dos campañas de investigación realizadas en 1981. II. Com Téc Mix Fr Mar 1: 8–14.

    Google Scholar 

  • Cunha, H., B. Medeiros, L. Barbosa, M. Cremer, J. Marigo, J. Lailson-Brito, A. Azevedo, and A.M. Solé-Cava. 2014. Population structure of the endangered franciscana dolphin (Pontoporia blainvillei): reassessing management units. PloS One 9 (1). doi:10.1371/journal.pone.0085633.

  • Cushman, S., and E. Landguth. 2010. Spurious correlations and inference in landscape genetics. Molecular Ecology 19: 3592–3602.

    Article  Google Scholar 

  • D’Anatro, A., and E.P. Lessa. 2011. Phenotypic and genetic variation in the white croaker Micropogonias furnieri Desmarest 1823 (Perciformes: Sciaenidae): testing the relative roles of genetic drift and natural selection on population divergence. Journal of Zoology 285: 139–149.

    Article  Google Scholar 

  • D’Anatro, A., A. Pereira, and E.P. Lessa. 2011. Genetic structure of the white croaker, Micropogonias furnieri Desmarest 1823 (Perciformes: Sciaenidae) along Uruguayan coasts: contrasting marine, estuarine, and lacustrine populations. Environmental Biology of Fishes 91: 407–420.

    Article  Google Scholar 

  • D’Anatro, A., D.E. Naya, E.P. Lessa, and O. Defeo. 2013. Contrasting patterns of morphological variation with dietary preferences in Micropogonias furnieri: insights from stable-isotope and digestive-trait analyses. Journal of Fish Biology 82: 1641–1658.

    Article  Google Scholar 

  • Excoffier, L., and H. Lischer. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.

    Article  Google Scholar 

  • Excoffier, L., P.E. Smouse, and J.M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.

    CAS  Google Scholar 

  • Excoffier, L., T. Hofer, and M. Foll. 2009. Detecting loci under selection in a hierarchically structured population. Heredity 103: 285–298.

    Article  CAS  Google Scholar 

  • Falush, D., M. Stephens, and J.K. Pritchard. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567–1587.

    CAS  Google Scholar 

  • Falush, D., M. Stephens, and J.K. Pritchard. 2007. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes 7: 574–578.

    Article  CAS  Google Scholar 

  • Feng, X., G. Jiang, and Z. Fan. 2015. Identification of outliers in a genomic scan for selection along environmental gradients in the bamboo locust, Ceracris kiangsu. Scientific Reports 5: 13758.

    Article  Google Scholar 

  • Figueroa, D., and J. Díaz de Astarloa. 1991. Análisis de los caracteres morfométricos y merísticos de la corvina rubia (Micropogonias furnieri) entre los 33°S y 40°S (Pisces, Sciaenidae). Atlantica 13: 8–14.

    Google Scholar 

  • Foll, M., and O. Gaggiotti. 2006. Identifying the environmental factors that determine the genetic structure of populations. Genetics 174: 875–891.

    Article  CAS  Google Scholar 

  • Foll, M., and O. Gaggiotti. 2008. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180: 977–993.

    Article  Google Scholar 

  • Gaggiotti, O., D. Bekkevold, H. Jørgensen, M. Foll, G. Carvalho, C. Andre, and D. Ruzzante. 2009. Disentangling the effects of evolutionary, demographic, and environmental factors influencing genetic structure of natural populations: Atlantic herring as a case study. Evolution; international journal of organic evolution 63: 2939–2951.

    Article  Google Scholar 

  • Gagnaire, P., T. Broquet, D. Aurelle, F. Viard, A. Souissi, F. Bonhomme, S. Arnaud-Haond, and N. Bierne. 2015. Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evolutionary Applications 8: 769–786.

    Article  Google Scholar 

  • Galindo, H., D. Olson, and S. Palumbi. 2006. Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Current Biology 16. doi:10.1016/j.cub.2006.06.052.

  • Galindo, H., A. Pfeiffer-Herbert, M. McManus, Y. Chao, F. Chai, and S. Palumbi. 2010. Seascape genetics along a steep cline: using genetic patterns to test predictions of marine larval dispersal. Molecular Ecology 19: 3692–3707.

    Article  Google Scholar 

  • Galli, O., and W. Norbis. 2013. Morphometric and meristic spatial differences and mixed groups of the whitemouth croaker ( Micropogonias furnieri (Desmarest, 1823)) during the spawning season: implications for management. Journal of Applied Ichthyology 29: 782–788.

    Article  Google Scholar 

  • Gariboldi, M.C., J. Túnez, C.B. Dejean, M. Failla, A. Vitullo, M. Negri, H. Cappozzo, et al. 2015. Population genetics of Franciscana dolphins (Pontoporia blainvillei): introducing a new population from the southern edge of their distribution. PloS One 10: e0132854. doi:10.1371/journal.pone.0132854.

    Article  Google Scholar 

  • Guerrero, R., A. Piola, G. Molinari, A. Osiroff, and S. Jauregui. 2010. Climatología de temperatura y salinidad en el Río de la Plata y su Frente Marítimo. Mar del Plata: Publicaciones Especiales INIDEP.

    Google Scholar 

  • Guichoux, E., P. Garnier-Géré, L. Lagache, T. Lang, C. Boury, and R.J. Petit. 2013. Outlier loci highlight the direction of introgression in oaks. Molecular Ecology 22: 450–462.

    Article  CAS  Google Scholar 

  • Guo, B., J. DeFaveri, G. Sotelo, A. Nair, and J. Merilä. 2015. Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks. BMC Biology 13: 19. doi:10.1186/s12915-015-0130-8.

  • Haimovici, M., and R. Gatto. 1996. Variaciones estacionales en la estructura poblacional del efectivo pesquero de corvina blanca Micropogonias furnieri (Desmarest, 1823) en el extremo sur de Brasil. Atlantica (Rio Grande) 18: 179–203.

    Google Scholar 

  • Hermisson, J. 2009. Who believes in whole-genome scans for selection? Heredity 103: 283–284.

    Article  CAS  Google Scholar 

  • Hilbish, T. 1996. Population genetics of marine species: the interaction of natural selection and historically differentiated populations. Journal of Experimental Marine Biology and Ecology 200: 67–83.

    Article  Google Scholar 

  • Hu, Y.C., C.K. Kang, C.H. Tang, and T.H. Lee. 2015. Transcriptomic analysis of metabolic pathways in milkfish that respond to salinity and temperature changes. PloS One 10: e0134959. doi:10.1371/journal.pone.0134959.

  • Hubisz, M., D. Falush, M. Stephens, and J.K. Pritchard. 2009. Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources 9: 1322–1332.

    Article  Google Scholar 

  • Isaac, V. 1988. Synopsis of biological data on the whitemouth croaker: Micropogonias furnieri (Desmarest, 1823). FAO Fish Synopsis.

  • Ituarte, R., A. D’Anatro, T. Luppi, P. Ribeiro, E. Spivak, O. Iribarne, and E. P. Lessa. 2012. Population structure of the SW atlantic estuarine crab Neohelice granulata throughout its range: a genetic and morphometric study. Estuaries and Coasts 35. Springer-Verlag: 1249–1260.

  • Jakobsson, M., and N. Rosenberg. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801–1806.

    Article  CAS  Google Scholar 

  • Jaureguizar, A.J., R. Menni, C. Bremec, H. Mianzan, and C. Lasta. 2003. Fish assemblage and environmental patterns in the Río de la Plata estuary. Estuarine, Coastal and Shelf Science 56: 921–933.

    Article  Google Scholar 

  • Jaureguizar, A.J., R. Menni, R. Guerrero, and C. Lasta. 2004. Environmental factors structuring fish communities of the Río de la Plata estuary. Fisheries Research 66: 195–211.

    Article  Google Scholar 

  • Jaureguizar, A.J., M. Militelli, and R. Guerrero. 2008. Distribution of Micropogonias furnieri at different maturity stages along an estuarine gradient and in relation to environmental factors. Journal of the Marine Biological Association of the UK 88: 175–181.

    Article  Google Scholar 

  • Jørgensen, H., M. Hansen, D. Bekkevold, D. Ruzzante, and V. Loeschcke. 2005. Marine landscapes and population genetic structure of herring (Clupea harengus L.) in the Baltic Sea. Molecular Ecology 14: 3219–3234.

    Article  Google Scholar 

  • Jørgensen, H., C. Pertoldi, M. Hansen, D. Ruzzante, and V. Loeschcke. 2008. Genetic and environmental correlates of morphological variation in a marine fish: the case of Baltic Sea herring (Clupea harengus). Canadian Journal of Fisheries and Aquatic Sciences 65: 389–400.

    Article  Google Scholar 

  • Jost, L. 2008. G ST and its relatives do not measure differentiation. Molecular Ecology 17: 4015–4026.

    Article  Google Scholar 

  • Knutsen, H., P.E. Jorde, C. André, and N. Chr Stenseth. 2003. Fine-scaled geographical population structuring in a highly mobile marine species: the Atlantic cod. Molecular Ecology 12: 385–394.

    Article  CAS  Google Scholar 

  • Kültz, D., J. Li, D. Paguio, T. Pham, M. Eidsaa, and E. Almaas. 2016. Population-specific renal proteomes of marine and freshwater three-spined sticklebacks. Journal of Proteomics 135: 112–131.

    Article  Google Scholar 

  • Lam, S., E. Lui, Z. Li, S. Cai, W. Sung, S. Mathavan, T. Lam, and Y. Ip. 2014. Differential transcriptomic analyses revealed genes and signaling pathways involved in iono-osmoregulation and cellular remodeling in the gills of euryhaline Mozambique tilapia, Oreochromis mossambicus. BMC Genomics 15: 921. doi:10.1186/1471-2164-15-921.

    Article  Google Scholar 

  • Lamichhaney, S., A. M. Barrio, N. Rafati, G. Sundstrom, C.-J. Rubin, E. R. Gilbert, J. Berglund, et al. 2012. Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. Proceedings of the National Academy of Sciences 109: 19345–19350.

  • Lazaro, M., E.P. Lessa, and H. Hamilton. 2004. Geograhic genetic structure in the Franciscana dolphin (Pontoporia blainvillei). Marine Mammal Science 20: 201–214.

    Article  Google Scholar 

  • Li, Y., J. Reif, S. Jackson, Y. Ma, R. Chang, and L. Qiu. 2014. Detecting SNPs underlying domestication-related traits in soybean. BMC Plant Biology 14: 251. doi:10.1186/s12870-014-0251-1.

    Article  Google Scholar 

  • Limborg, M., S. Helyar, M. Bruyn, M. Taylor, E. Nielsen, R. Ogden, G. Carvalho, FPT Consortium, and D. Bekkevold. 2012. Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Molecular Ecology 21: 3686–3703.

    Article  CAS  Google Scholar 

  • Lotterhos, K., and M. Whitlock. 2014. Evaluation of demographic history and neutral parameterization on the performance of F ST outlier tests. Molecular Ecology 23: 2178–2192.

    Article  Google Scholar 

  • Maggioni, R., A. Pereira, B. Jerez, L. Marins, M.B. Conceicao, and J. Levy. 1994. Estudio preliminar de la estructura genética de la corvina (Micropogonias furnieri) entre Rio Grande (Brasil) y El Rincon (Argentina). Frente marítimo 15: 127–131.

    Google Scholar 

  • Manel, S., M. Schwartz, G. Luikart, and P. Taberlet. 2003. Landscape genetics: combining landscape ecology and population genetics. Trends in Ecology & Evolution 18: 189–197.

    Article  Google Scholar 

  • Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209–220.

    CAS  Google Scholar 

  • Moore, J., V. Bourret, M. Dionne, I. Bradbury, P. O’Reilly, M. Kent, G. Chaput, and L. Bernatchez. 2014. Conservation genomics of anadromous Atlantic salmon across its north American range: outlier loci identify the same patterns of population structure as neutral loci. Molecular Ecology 23: 5680–5697.

    Article  CAS  Google Scholar 

  • Nguyen, T., H. Jung, T. Nguyen, D. Hurwood, and P. Mather. 2016. Evaluation of potential candidate genes involved in salinity tolerance in striped catfish (Pangasianodon hypophthalmus) using an RNA-Seq approach. Marine Genomics 25: 75–88.

    Article  Google Scholar 

  • Nielsen, E., J. Hemmer-Hansen, P. Larsen, and D. Bekkevold. 2009. Population genomics of marine fishes: identifying adaptive variation in space and time. Molecular Ecology 18: 3128–3150.

    Article  Google Scholar 

  • O’Malley, K.G., C.A. Abbey, K. Ross, and J. Gold. 2003. Microsatellite DNA markers for kinship analysis and genetic mapping in red drum, Sciaenops ocellatus (Sciaenidae, Teleostei). Molecular Ecology Notes 3: 155–158.

    Article  Google Scholar 

  • Oleksyk, T.K., M.W. Smith, and S.J. O’Brien. 2010. Genome-wide scans for footprints of natural selection. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 185–205.

    Article  CAS  Google Scholar 

  • Peakall, R., and P. Smouse. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research. Bioinformatics 28: 2537–2539.

    Article  CAS  Google Scholar 

  • Peltier, W.R., D.F. Argus, and R. Drummond. 2015. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth 120: 450–487.

    Google Scholar 

  • Pereira, A., A. Márquez, M. Marin, and Y. Marin. 2009. Genetic evidence of two stocks of the whitemouth croaker Micropogonias furnieri in the Río de la Plata and oceanic front in Uruguay. Journal of Fish Biology 75: 321–331.

    Article  CAS  Google Scholar 

  • Peres-Neto, Pedro R., and D. Jackson. 2001. How well do multivariate data sets match ? The advantages of a procrustean superimposition approach over the Mantel test. Oecologia 129: 169–178.

    Article  Google Scholar 

  • Poćwierz-Kotus, A., A. Kijewska, C. Petereit, R. Bernaś, B. Więcaszek, M. Arnyasi, S. Lien, M.P. Kent, and R. Wenne. 2015. Genetic differentiation of brackish water populations of cod Gadus morhua in the southern Baltic, inferred from genotyping using SNP-arrays. Marine Genomics 19: 17–22.

    Article  Google Scholar 

  • Prieto, A., D. Mourelle, W. Peltier, R. Drummond, I. Vilanova, and L. Ricci. 2016. Relative sea-level changes during the Holocene in the Río de la Plata, Argentina and Uruguay: A review. Quaternary International. doi:10.1016/j.quaint.2016.02.044. In press.

  • Pritchard, J., M. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.

    CAS  Google Scholar 

  • Rosenberg, N. 2004. DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes 4: 137–138.

    Article  Google Scholar 

  • Selkoe, K., J. Watson, C. White, T. Horin, M. Iacchei, S. Mitarai, D. Siegel, S. Gaines, and R. Toonen. 2010. Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Molecular Ecology 19: 3708–3726. doi:10.1111/j.1365-294X.2010.04658.x.

    Article  Google Scholar 

  • Shikano, T., J. Ramadevi, and J. Merilä. 2010. Identification of local- and habitat-dependent selection: scanning functionally important genes in nine-spined sticklebacks (Pungitius pungitius). Molecular Biology and Evolution 27: 2775–2789.

    Article  CAS  Google Scholar 

  • Shimada, Y., T. Shikano, and J. Merilä. 2011. A high incidence of selection on physiologically important genes in the three-spined stickleback, Gasterosteus aculeatus. Molecular Biology and Evolution 28: 181–193.

    Article  CAS  Google Scholar 

  • Slatkin, M., and L. Voelm. 1991. FST in a hierarchical island model. Genetics: 627–629.

  • Soto-Cerda, B., and S. Cloutier. 2013. Outlier loci and selection signatures of simple sequence repeats (SSRs) in flax (Linum usitatissimum L.). Plant Molecular Biology Reporter 31: 978–990.

    Article  CAS  Google Scholar 

  • Szpiech, Z., M. Jakobsson, and N. Rosenberg. 2008. ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24: 2498–2504.

    Article  CAS  Google Scholar 

  • Teacher, A., C. André, P. Jonsson, and J. Merilä. 2013. Oceanographic connectivity and environmental correlates of genetic structuring in Atlantic herring in the Baltic Sea. Evolutionary Applications 6: 549–567.

    Article  Google Scholar 

  • Thanh, N., H. Jung, R. Lyons, Vi. Chand, N.T Tuan, V. Thu, and P. Mather. 2014. A transcriptomic analysis of striped catfish (Pangasianodon hypophthalmus) in response to salinity adaptation: de novo assembly, gene annotation and marker discovery. Comparative biochemistry and physiology. Part D, Genomics & proteomics 10: 52–63. doi:10.1016/j.cbd.2014.04.001.

  • Turner, T.F., L.R. Richardson, and J.R. Gold. 1998. Polymorphic microsatellite DNA markers in red drum (Sciaenops ocellatus). Molecular Ecology 7: 1771–1773.

    Article  CAS  Google Scholar 

  • Vazzoler, A.E.A.M. 1971. Diversificaçao fisiológica e morfológica de Micropogonias furnieri (Desmarest, 1823) ao sul de Cabo Frío, Brasil. Bol Inst Oceanogr: 1–70.

  • Vazzoler, A.E.A.M. 1991. Sintese de conhecimentos sobre a biologia da corvina, Micropogonias furnieri (desmarest, 1823), da costa do brasil. Atlantica (Rio Grande) 13: 55–74.

    Google Scholar 

  • Vizziano, D., F. Forni, G. Saona, and W. Norbis. 2002. Reproduction of Micropogonias furnieri in a shallow temperate coastal lagoon in the southern Atlantic. Journal of Fish Biology 61: 196–206. doi:10.1006/jfbi.2002.2077.

    Article  Google Scholar 

  • Weir, B. 1996. Genetic data analysis 2: methods for discrete population genetic data. Sunderland: Sinauer Associates, Inc..

    Google Scholar 

  • Xia, H., X. Zheng, L. Chen, H. Gao, H. Yang, P. Long, J. Rong, B. Lu, J. Li, and L. Luo. 2014. Genetic differentiation revealed by selective loci of drought-responding EST-SSRs between upland and lowland rice in China. PloS One 9: e106352. doi:10.1371/journal.pone.0106352.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Enrique P. Lessa and Mateo García for suggestions made along this work. I am also thankful to two anonymous reviewers for constructive comments on an earlier draft of this manuscript. Financial support was provided by Comisión Sectorial de Investigación Científica (CSIC, Uruguay) and Agencia Nacional de Investigación e Innovación (ANII, Uruguay).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro D’Anatro.

Additional information

Communicated by Nadine A. Strydom

Electronic supplementary material

.

ESM 1

(PDF 257 kb)

.

ESM 2

(PDF 394 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Anatro, A. Correlation Between Environmental Factors, a Life History Trait, Phenotypic Cohesion, and Gene Flow Levels in Natural Populations of Micropogonias furnieri: Is Salinity the Main Factor Driving Divergence?. Estuaries and Coasts 40, 1717–1731 (2017). https://doi.org/10.1007/s12237-017-0234-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-017-0234-1

Keywords

Navigation