Skip to main content

Advertisement

Log in

Salt Marsh Sustainability: Challenges During an Uncertain Future

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Many salt marshes throughout southern New England are exhibiting a trend toward submergence, as reported in this volume and other published literature. This paper provides a brief perspective on sea-level rise and the many other interacting factors that contribute to marsh submergence in this and other regions. Curtailing nutrient loading and removing or altering barriers (e.g., dams, dikes) to the delivery of suspended sediment to marshes are discussed as management or restoration techniques to consider for increasing long-term sustainability of marshes. Adaptation measures are many (e.g., thin-layer sediment application to marsh surface, facilitation of landward marsh migration, shoreline stabilization), but all require study to evaluate their potential for enhancing resilience. Research, monitoring, and dynamic modeling, coupled with appropriate management and adaptation approaches implemented at local and regional scales, will contribute to the challenge of sustaining salt marshes in an uncertain future of sea-level rise, other climate factors, and stressors associated with a developing coastal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bertness, M.D., and P.J. Ewanchuk. 2002. Latitudinal and climate-driven variation in the strength and nature of biological interactions in New England salt marshes. Oecologia 132: 392–401.

    Article  Google Scholar 

  • Bricker-Urso, S.S., S.W. Nixon, J.K. Cochran, D.J. Hirshberg, and C. Hunt. 1989. Accretion rates and sediment accumulation in Rhode Island salt marshes. Estuaries 12: 300–317.

    Article  CAS  Google Scholar 

  • Brinson, M.M., R.R. Christian, and L.K. Blum. 1995. Multiple states in sea-level induced transition from terrestrial forest to estuary. Estuaries 18: 648–659.

    Article  CAS  Google Scholar 

  • Burdick, D.M., and C.T. Roman. 2012. Salt marsh responses to tidal restriction and restoration: a summary of experiences. In Tidal marsh restoration: a synthesis of science and management, eds. C.T. Roman, and D.M. Burdick, 373–382. Washington: Island Press.

    Chapter  Google Scholar 

  • Cahoon, D.R., and G.R. Guntenspergen. 2010. Climate change, sea-level rise, and coastal wetlands. National Wetlands Newsletter 32: 8–12.

    Google Scholar 

  • Cahoon, D.R., D.J. Reed, A. S. Kolker, M.M. Brinson, J. C. Stevenson, S. Riggs, R. Christian, E. Reyes, C. Voss, and D. Kunz. 2009. Coastal wetland sustainability, Chapter 4. In Coastal sensitivity to sea-level rise: a focus on the mid-Atlantic region, 57–72, Report by the US Climate Change Science Program and the Subcommittee on Global Change Research, Synthesis and Assessment Product 4.1.

  • Carey, J.C., S.B. Moran, R.P. Kelly, A.S. Kolker, and R.W. Fulweiler. 2015. The declining role of organic matter in New England salt marshes. Estuaries and Coasts. doi:10.1007/s12237-015-9971-1.

    Google Scholar 

  • Carmichael, D.P. 1980. A record of environmental change during recent millennia in the Hackensack tidal marsh, New Jersey. Bulletin of the Torrey Botanical Club 107: 514–524.

    Article  Google Scholar 

  • Cherry, J.A., K.L. McKee, and J.B. Grace. 2009. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. Journal of Ecology 97: 67–77.

    Article  Google Scholar 

  • Church, J.A., P.U. Clark, A. Cazenave, J.M. Gregory, S. Jevrejeva, A. Levermann, M.A. Merrifield, G.A. Milne, R.S. Nerem, P.D. Nunn, A.J. Payne, W.T. Pfeffer, D. Stammer, and A.S. Unnikrishnan. 2013. Sea level change. In Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, eds. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, U. Xia, V. Bex, and P.M. Midgley, 1137–1216. Cambridge and New York: Cambridge University Press.

    Google Scholar 

  • Clark, J.S., and W.A. Patterson III. 1985. The development of a tidal marsh: upland and oceanic influences. Ecological Monographs 55: 189–217.

    Article  Google Scholar 

  • Crain, C.M., K.B. Geden, and M. Dionne. 2009. Tidal restrictions and mosquito ditching in New England marshes. In Human impacts on salt marshes: a global perspective, eds. B.R. Silliman, E.D. Grosholz, and M.D. Bertness, 149–169. Berkeley: University of California Press.

    Google Scholar 

  • D’Alpaos, A. 2011. The mutual influence of biotic and abiotic components on the long-term ecomorphodynamic evolution of salt-marsh ecosystems. Geomorphology 126: 269–278.

    Article  Google Scholar 

  • Day, J.W. Jr., F. Scarton, A. Rismondo, and D. Are. 1998. Rapid deterioration of a salt marsh in Venice Lagoon, Italy. Journal of Coastal Research 14: 583–590.

    Google Scholar 

  • Deegan, L.A., D.S. Johnson, R.S. Warren, B. Peterson, J.W. Fleeger, S. Fagherazzi, and W. Wollheim. 2012. Coastal eutrophication as a driver of marsh loss. Nature 490: 388–392.

    Article  CAS  Google Scholar 

  • DeLaune, R.D., J.A. Nyman, and W.H. Patrick Jr. 1994. Peat collapse, ponding and wetland loss in a rapidly submerging coastal marsh. Journal of Coastal Research 10: 1021–1030.

    Google Scholar 

  • DeLaune, R.D., W.H. Patrick Jr., and R.J. Buresh. 1978. Sedimentation rates determined by 137Cs dating in a rapidly accreting salt marsh. Nature 275: 532–533.

    Article  CAS  Google Scholar 

  • Donnelly, J.P., and M.D. Bertness. 2001. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy of Sciences 98: 14218–14223.

    Article  CAS  Google Scholar 

  • Donnelly, J.P., S.S. Bryant, J. Butler, J. Dowling, L. Fan, N. Hausmann, P. Newby, B. Shuman, J. Stern, K. Westover, and T. Webb III. 2001. 700 yr sedimentary record of intense hurricane landfalls in southern New England. GSA Bulletin 113: 714–727.

    Article  Google Scholar 

  • Fagherazzi, S., M.L. Kirwan, S.M. Mudd, G.R. Guntenspergen, S. Temmerman, A. D’Alpaos, J. van de Koppel, J.M. Rybczyk, E. Reyes, C. Craft, and J. Clough. 2012. Numerical models of salt mash evolution: ecological, geomorphic, and climatic factors. Review of Geophysics 50: RG1002.

    Article  Google Scholar 

  • Ford, M.A., D.R. Cahoon, and J.C. Lynch. 1996. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material. Ecological Engineering 12: 189–205.

    Article  Google Scholar 

  • French, P.W., J.R.L. Allen, and P.G. Appleby. 1994. 210-lead dating of a modern period saltmarsh deposit from the Severn Estuary (Southwest Britain), and its implications. Marine Geology 118: 327–334.

    Article  CAS  Google Scholar 

  • Geden, K.B., and M.D. Bertness. 2009. Experimental warming causes rapid loss of plant diversity in New England salt marshes. Ecology Letters 12: 842–848.

    Article  Google Scholar 

  • Hartig, E.K., V. Gornitz, A. Kokler, F. Mushacke, and D. Fallon. 2002. Anthropogenic and climate-change impacts on salt marshes of Jamaica Bay, New York City. Wetlands 22: 71–89.

    Article  Google Scholar 

  • Holdredge, C., M.D. Bertness, and A.H. Altieri. 2008. Role of crab herbivory in die-off of New England salt marshes. Conservation Biology 23: 672–679.

    Article  Google Scholar 

  • Houser, C., and P. Hill. 2010. Wave attenuation across an intertidal sand flat: implications for mudflat development. Journal of Coastal Research 26: 403–411.

    Article  Google Scholar 

  • Howes, B.L., J.W.H. Dacey, and D.D. Goehringer. 1986. Factors controlling the growth form of Spartina alterniflora: feedbacks between above-ground production, sediment oxidation, nitrogen, and salinity. Journal of Ecology 74: 881–898.

    Article  Google Scholar 

  • Kirwan, M.L., and J.P. Megonigal. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504: 53–60.

    Article  CAS  Google Scholar 

  • Kirwan, M.L., G.R. Guntenspergen, A. D’Alpaos, J.T. Morris, S.M. Mudd, and S. Temmerman. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters 37: L23401.

    Article  Google Scholar 

  • Kirwan, M.L., G.R. Guntenspergen, and J.T. Morris. 2009. Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Global Change Biology 15: 1982–1989.

    Article  Google Scholar 

  • Kirwan, M.L., S. Temmerman, E.E. Skeehan, G.R. Guntenspergen, and S. Fagherazzi. 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change 6: 253–260.

    Article  Google Scholar 

  • Koch, M.S., I.A. Mendelssohn, and K.L. McKee. 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnology and Oceanography 35: 399–408.

    Article  CAS  Google Scholar 

  • Kolker, A.A., S.L. Goodbred Jr., S. Hameed, and J.K. Cochran. 2009. High-resolution records of the response of coastal wetland systems to long-term and short-term sea-level variability. Estuarine, Coastal and Shelf Science 84: 493–508.

    Article  CAS  Google Scholar 

  • Kolker, A.S., M.L. Kirwan, S.L. Goodbred, and J.K. Cochran. 2010. Global climate changes recorded in coastal wetland sediments: empirical observations linked to theoretical predications. Geophysical Research Letters 37: L14706.

    Article  Google Scholar 

  • Langley, J.A., K.L. McKee, D.R. Cahoon, J.A. Cherry, and J.P. Megonigal. 2009. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proceedings of the National Academy of Sciences 106: 6182–6186.

    Article  CAS  Google Scholar 

  • Mendelssohn, I.A., and N.L. Kuhn. 2003. Sediment subsidy: effects on soil-plant responses in a rapidly submerging coastal salt marsh. Ecological Engineering 21: 115–128.

    Article  Google Scholar 

  • Mendelssohn, I.A., K.L. McKee, and W.H. Patrick Jr. 1981. Oxygen deficiency in Spartina alterniflora roots: metabolic adaptation to anoxia. Science 214: 439–441.

    Article  CAS  Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83: 2869–2877.

    Article  Google Scholar 

  • Morris, J.T., K. Sundberg, and C.S. Hopkinson. 2013. Salt marsh productivity and its responses to relative sea level and nutrients at Plum Island, Massachusetts, and North Inlet South Carolina, USA. Oceanography 26: 78–84.

    Article  Google Scholar 

  • Mudd, S.M., S.M. Howell, and J.T. Morris. 2009. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuarine, Coastal and Shelf Science 82: 377–389.

    Article  CAS  Google Scholar 

  • Nordstrom, K.F., and N.L. Jackson. 2013. Removing shore protection structures to facilitate migration of landforms and habitats on the bayside of a barrier spit. Geomorphology 199: 179–183.

    Article  Google Scholar 

  • Nyman, J.A., R.J. Walters, R.D. DeLaune, and W.H. Patrick Jr. 2006. Marsh vertical accretion via vegetative growth. Estuarine, Coastal and Shelf Science 69: 370–380.

    Article  Google Scholar 

  • Orson, R.A., R.S. Warren, and W.A. Niering. 1987. Development of a tidal marsh in a New England river valley. Estuaries 10: 20–27.

    Article  Google Scholar 

  • Orson, R.A., R.S. Warren, and W.A. Niering. 1998. Interpreting sea level rise and rates of vertical marsh accretion in a southern New England tidal salt marsh. Estuarine, Coastal and Shelf Science 47: 419–429.

    Article  Google Scholar 

  • Quammen, M.L. 1982. Influence of subtle substrate differences on feeding by shorebirds on intertidal flats. Marine Biology 71: 3339–3343.

    Article  Google Scholar 

  • Rafferty, P., J. Castagna, and D. Adamo. 2011. Building partnerships to restore an urban marsh ecosystem at Gateway National Recreation Area. Park Science 27(3): 34–41.

    Google Scholar 

  • Raposa, K.B., R.L.J. Weber, M. Cole Ekberg, and W. Ferguson. 2015. Vegetation dynamics in Rhode Island salt marshes during a period of accelerating sea level rise and extreme sea level events.Estuaries and Coasts. doi:10.1007/s12237-015-0018-4.

    Google Scholar 

  • Redfield, A.C. 1972. Development of a New England salt marsh. Ecological Monographs 42: 201–237.

    Article  Google Scholar 

  • Reed, D.J. 1988. Sediment dynamics and deposition in a retreating coastal salt marsh. Estuarine, Coastal and Shelf Science 26: 67–79.

    Article  Google Scholar 

  • Reed, D.J. 1995. The response of coastal marshes to sea-level rise: survival or submergence? Earth Surface Processes and Landforms 20: 39–48.

    Article  Google Scholar 

  • Reed, D.J. 2002. Sea-level rise and coastal marsh sustainability: geological and ecological factors in the Mississippi delta plain. Geomorphology 48: 233–243.

    Article  Google Scholar 

  • Roman, C.T., and D.M. Burdick, eds. 2012. Tidal marsh restoration: a synthesis of science and management. Washington: Island Press.

    Google Scholar 

  • Roman, C.T., J.A. Peck, J.R. Allen, J.W. King, and P.S. Appleby. 1997. Accretion of a New England salt marsh in response to inlet migration, storms and sea-level rise. Estuarine, Coastal and Shelf Science 45: 717–727.

    Article  Google Scholar 

  • Rozas, L.P., and D.J. Reed. 1993. Nekton use of marsh-surface habitats in Louisiana (USA) deltaic salt marshes undergoing submergence. Marine Ecology Progress Series 96: 147–157.

    Article  Google Scholar 

  • Silliman, B.R., and J.C. Zieman. 2001. Top-down control of Spartina alterniflora production by periwinkle grazing in a Virginia salt marsh. Ecology 82: 2830–2845.

    Article  Google Scholar 

  • Smith, J.A.M. 2013. The role of Phragmites australis in mediating inland salt marsh migration in a mid-Atlantic estuary. PloS One 8: e65091.

    Article  Google Scholar 

  • Smith, S.M. 2009. Multi-decadal changes in salt marshes of Cape Cod, MA: photographic analyses of vegetation loss, species shifts, and geomorphic change. Northeastern Naturalist 16: 183–208.

    Article  Google Scholar 

  • Smith, S.M. 2015. Vegetation change in salt marshes of Cape Cod National Seashore (Massachusetts, USA) between 1984 and 2013. Wetlands 35: 127–136.

    Article  Google Scholar 

  • Stevenson, J.C., and M.S. Kearney. 2009. Impacts of global climate change and sea-level rise on tidal marshes. In Human impacts on salt marshes: a global perspective, eds. B.R. Silliman, E.D. Grosholz, and M.D. Bertness, 171–206. Berkeley: University of California Press.

    Google Scholar 

  • Turner, R.E. 2011. Beneath the saltmarsh canopy: loss of soil strength with increasing nutrient loads. Estuaries and Coasts 34: 1084–1093.

    Article  CAS  Google Scholar 

  • Turner, R.E. 1997. Wetland loss in the northern Gulf of Mexico: multiple working hypotheses. Estuaries 20: 1–13.

    Article  Google Scholar 

  • Warren, R.S., and W.A. Niering. 1993. Vegetation change on a northeast tidal marsh: interaction of sea-level rise and marsh accretion. Ecology 74: 96–103.

    Article  Google Scholar 

  • Watson, E.B., C. Wigand, E.W. Davey, H.M. Andrews, and J. Bishop. 2016. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt marsh loss for southern New England. Estuaries and Coasts. doi:10.1007/s12237-016-0069-1.

  • Whitlatch, R.B. 1982. The ecology of New England tidal flats: a community profile. Washington, DC: US Fish and Wildlife Service, Biological Services Program FWS/OBS-81/01.

    Google Scholar 

  • Wigand, C., T. Ardito, C. Chaffee, W. Ferguson, S. Paton, K. Raposa, C. Vandemoer, and E. Watson. 2015. A climate change adaptation strategy for management of coastal marsh systems. Estuaries and Coasts. doi:10.1007/s12237-015-0003-y.

    Google Scholar 

  • Wigand, C., C.T. Roman, E. Davey, M. Stolt, R. Johnson, A. Hanson, E.B. Watson, S.B. Moran, D.R. Cahoon, J.C. Lynch, and P. Rafferty. 2014. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure. Ecological Applications 24: 633–649.

    Article  Google Scholar 

  • Williams, K., K.C. Ewel, R.P. Stumpf, F.E. Putz, and T.W. Workman. 1999. Sea-level rise and coastal forest retreat on the west coast of Florida, USA. Ecology 80: 2045–2063.

    Article  Google Scholar 

  • Yang, S., C.T. Friedrichs, S. Shi, P. Ding, J. Zhu, and Q. Zhao. 2003. Morphological response of tidal marshes, flats and channels of the outer Yangtze River mouth to a major storm. Estuaries 26: 1416–1425.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are extended to Kenneth Raposa, Elizabeth Watson, and Cathleen Wigand for inviting my contribution to this collection of papers on southern New England salt marshes and for reviewing an earlier draft of this manuscript. Anonymous reviewers are thanked for their thoughtful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles T. Roman.

Additional information

Communicated by Cathleen Wigand

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roman, C.T. Salt Marsh Sustainability: Challenges During an Uncertain Future. Estuaries and Coasts 40, 711–716 (2017). https://doi.org/10.1007/s12237-016-0149-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-016-0149-2

Keywords

Navigation