Skip to main content

Advertisement

Log in

The Importance of Estuarine Production of Large Prey for the Growth of Juvenile Temperate Seabass (Lateolabrax japonicus)

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The feeding ecology of juvenile temperate seabass (Lateolabrax japonicus) in relation to various prey environments was analyzed in the Yura River estuary from 2008 to 2012. Juveniles mainly fed on copepods and mysids, both in the Yura River estuary and in the adjacent coastal area. The dependency on the mysids increased as juveniles grew from 15 to 25 mm standard length (SL), and the main stomach contents were mysids for juveniles larger than 25 mm SL. The maximum size of food contents increased from 2 to 15 mm with the growth of juveniles from 15 to 25 mm SL. Most prey items smaller and larger than 2 mm were composed of copepods and mysids, respectively. The mean size of ingested food items increased with the size of the juveniles, while the mean number of prey items in each stomach decreased with growth after juveniles reached 22 mm SL. As a result, the stomach content index increased with the size of juveniles. These results indicate that the shift to larger-sized prey items (from copepods to mysids) is important for juveniles to obtain energy efficiently. Mysids were larger and more abundant in the estuaries than those in the coastal area. Therefore, the estuary provided better foraging conditions to juvenile temperate seabass than the coastal area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aoki T., A. Kasai, T. Fuji, M. Ueno, and Y. Yamashita. 2014. Seasonal variation in fish community and their prey organisms in the Yura River estuary. Bulletin of the Japanese Society of Fisheries Oceanography. 78: 1–12.

    Google Scholar 

  • Able K.W. 2005. A re-examination of fish estuarine dependence: evidence for connectivity between estuarine and ocean habitats. Estuarine, Coastal and Shelf Science 64: 5–17.

    Article  Google Scholar 

  • Arrhenius F. 1996. Diet composition and food selectivity of 0-group herring (Clupea harengus L.) and sprat (Sprattus sprattus (L.)) in the northern Baltic Sea. ICES Journal of Marine Science 53: 701–712.

    Article  Google Scholar 

  • Beck M.W., K.L. Heck, K.W. Able, D.L. Childers, D.B. Eggleston, B.M. Gillanders, B. Halpern, C.G. Hays, K. Hoshino, T.J. Minello, R.J. Orth, P.F. Sheridan, and M.R. Weinstein. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51: 633–641.

    Article  Google Scholar 

  • Dahlgren C.P., and D.B. Eggleston. 2000. Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 81: 2227–2240.

    Article  Google Scholar 

  • Elliott M., A.K. Whitfield, I.C. Potter, S.J.M. Blaber, D.P. Cyrus, F.G. Nordlie, and T.D. Harrison. 2007. The guild approach to categorizing estuarine fish assemblages: a global review. Fish and Fisheries 8: 241–268.

    Article  Google Scholar 

  • Friedland K.D., P.D. Lynch, and C.J. Gobler. 2011. Time series mesoscale response of Atlantic menhaden Brevoortia tyrannus to variation in plankton abundances. Journal of Coastal Research 27: 1148–1158.

    Article  Google Scholar 

  • Fuji T., A. Kasai, K.W. Suzuki, M. Ueno, and Y. Yamashita. 2010. Freshwater migration and feeding habits of juvenile temperate seabass Lateolabrax japonicus in the stratified Yura River estuary, the Sea of Japan. Fisheries Science 76: 643–652.

    Article  CAS  Google Scholar 

  • Fuji T., A. Kasai, K.W. Suzuki, M. Ueno, and Y. Yamashita. 2011. Migration ecology of juvenile temperate seabass Lateolabrax japonicus: a carbon stable-isotope approach. Journal of Fish Biology 78: 2010–2025.

    Article  CAS  Google Scholar 

  • Fuji T., A. Kasai, M. Ueno, and Y. Yamashita. 2014. Growth and migration patterns of juvenile temperate seabass Lateolabrax japonicus in the Yura River estuary, Japan—combination of stable isotope ratio and otolith microstructure analyses. Environmental Biology of Fishes 97: 1221–1232.

  • Fujita S., I. Kinoshita, I. Takahashi, and K. Azuma. 1988. Seasonal occurrence and food habits of larvae and juveniles of two temperate basses in the Shimanto estuary, Japan. Japanese Journal of Ichthyology 35: 365–370.

    Google Scholar 

  • Fujita S., I. Kinoshita, Y. Kawamura, and D. Aoyama. 2007. The diversity in the early life history of Lateolabrax japonicus in the Ariake Bay. Aquabiology 29: 47–54.

    Google Scholar 

  • Ghan D., and W.G. Sprules. 1993. Diet, prey selection, and growth of larval and juvenile burbot Lota lota (L.). Journal of Fish Biology 42: 47–64.

    Article  Google Scholar 

  • Hart P.J.B., and B. Connellan. 1984. Cost of prey capture, growth rate and ration size in pike, Esox lucius L., as functions of prey weight. Journal of Fish Biology 25: 279–292.

    Article  Google Scholar 

  • Hayashi B., and S. Kiyono. 1978. Ecological studies on the Japanese sea bass, in the western Wakasa Bay—2: the food habitat and growth of Japanese seabass in yearling. Bulletin of Kyoto Institute of Oceanic and Fishery Science 2: 109–116.

    Google Scholar 

  • Hibino M., H. Ueda, and M. Tanaka. 1999. Feeding habits of Japanese temperate bass and copepod community in the Chikugo River estuary, Ariake Sea, Japan. Nippon Suisan Gakkaishi 65: 1062–1068.

    Article  Google Scholar 

  • Hibino M., T. Ohta, T. Isoda, K. Nakayama, and M. Tanaka. 2006. Diel and tidal changes in the distribution and feeding habits of Japanese temperate bass Lateolabrax japonicus juveniles in the surf zone of Ariake Bay. Ichthyological Research 53: 129–136.

    Article  Google Scholar 

  • Honda H., S. Katayama, K. Ito, Y. Chida, M. Omori, and A. Okata. 1997. Structure and function of the production system in an estuarine fish assemblage. Bulletin on Coastal Oceanography 35: 57–68.

    Google Scholar 

  • Hyslop E.J. 1980. Stomach contents analysis—a review of methods and their application. Journal of Fish Biology 17: 411–429.

    Article  Google Scholar 

  • Islam M.S., and M. Tanaka. 2006. Spatial variability in nursery functions along temperate estuarine gradient: role of detrital versus algal trophic pathways. Canadian Journal of Fisheries and Aquatic Sciences 63: 1848–1864.

    Article  Google Scholar 

  • Islam M.S., M. Hibino, and M. Tanaka. 2006. Distribution and dietary relationships of the Japanese temperate bass Lateolabrax japonicus juveniles with two contrasting copepod assemblages in estuarine nursery grounds in the Ariake Sea, Japan. Journal of Fish Biology 68: 569–593.

    Article  Google Scholar 

  • Islam M.S., Y. Yamashita, and M. Tanaka. 2011. A review on the early life history and ecology of Japanese sea bass and implication for recruitment. Environmental Biology of Fishes 91: 389–405.

    Article  Google Scholar 

  • Iwamoto Y., T. Morita, and J. Shoji. 2010. Occurrence and feeding habits of Japanese seabass Lateolabrax japonicus larvae and juveniles around the Ohta River estuary, upper Hiroshima Bay, Seto Inland Sea. Nippon Suisan Gakkaishi 76: 841–848.

    Article  Google Scholar 

  • Kasai A., Y. Kurikawa, M. Ueno, D. Robert, and Y. Yamashita. 2010. Salt-wedge intrusion of seawater and its implication for phytoplankton dynamics in the Yura estuary, Japan. Estuarine, Coastal and Shelf Science 86: 408–414.

    Article  CAS  Google Scholar 

  • Keeley E.R., and J.W.A. Grant. 2001. Prey size of salmonid fishes in stremas, lakes, and oceans. Canadian Journal of Fisheries and Aquatic Sciences. 58: 1122–1132.

    Article  Google Scholar 

  • Kerr L.A., D.H. Secor, and P.M. Piccoli. 2009. Partial migration of fishes as exemplified by the estuarine-dependent white perch. Fisheries 34: 114–123.

    Article  Google Scholar 

  • Kislalioglu M., and R.N. Gibson. 1976. Prey ‘handling time’ and its importance in food selection by the 15-spined stickleback, Spinachia spinachia (L.). Journal of Experimental Marine Biology and Ecology 25: 115–158.

    Google Scholar 

  • Matsumiya Y., T. Mitani, and M. Tanaka. 1982. Changes in distribution pattern and condition coefficient of the juvenile Japanese sea bass with the Chikugo River ascending. Nippon Suisan Gakkaishi 48: 129–138.

    Article  Google Scholar 

  • Morinville G.R., and J.B. Rasmussen. 2003. Early juvenile bioenergetics differences between anadromous and resident brook trout (Salvelinus fontinalis). Canadian Journal of Fisheries and Aquatic Sciences 60: 401–410.

    Article  Google Scholar 

  • Nip T.H.M., W.Y. Ho, and C.K. Wong. 2003. Feeding ecology of larval and juvenile black seabream (Acanthopagrus schlegeli) and Japanese seaperch (Lateolabrax japonicus) in Tolo Harbour, Hong Long. Environmental Biology of Fishes 66: 197–209.

    Article  Google Scholar 

  • North E.W., and E.D. Houde. 2003. Linking ETM physics, zooplankton prey, and fish early-life histories to striped bass Morone saxatilis and white perch M. americana recruitment. Marine Ecology Progress Series 260: 219–236.

    Article  Google Scholar 

  • Nunn A.D., L.H. Tewson, and I.G. Cowx. 2011. The foraging ecology of larval and juvenile fishes. Reviews in Fish Biology and Fisheries 22: 377–408.

    Article  Google Scholar 

  • Odebrecht C., P.C. Abreu, and J. Carstensen. 2015. Retention time generates short-term phytoplankton blooms in a shallow microtidal subtropical estuary. Estuarine, Coastal and Shelf Science 162: 35–44.

    Article  CAS  Google Scholar 

  • Olson M.H. 1996. Ontogenetic niche shifts in largemouth bass: variability and consequences for first-year growth. Ecology 77: 179–190.

    Article  Google Scholar 

  • Paerl H.W., N.S. Hall, B.L. Peierls, K.L. Rossignol, and A.R. Joyner. 2014. Hydrologic variability and its control of phytoplankton community structure and function in two shallow, coastal, lagoonal ecosystems: the Neuse and New River Estuaries, North Carolina, USA. Estuaries and Coasts 37: 31–45.

    Article  Google Scholar 

  • Pazzia I., M. Trudel, M. Ridgway, and J.B. Rasmussen. 2002. Influence of food web structure on the growth and bioenergetics of lake trout (Salvelinus namaycush). Canadian Journal of Fisheries and Aquatic Sciences 59: 1593–1605.

    Article  Google Scholar 

  • Pittman S.J., and C.A. McAlpine. 2001. Movements of marine fish and decapod crustaceans: process, theory and application. Advances in Marine Biology 44: 206–272.

    Google Scholar 

  • Sherwood G.D., I. Pazzia, A. Moeser, A. Hontela, and J.B. Rasmussen. 2002. Shifting gears: enzymatic evidence for the energetic advantage of switching diet in wild-living fish. Canadian Journal of Fisheries and Aquatic Sciences 59: 229–241.

    Article  Google Scholar 

  • Shirota A. 1978. Studies on the mouth size of fish larvae—3. Relationship between inflection point of the upper jaw growth and morphological–ecological change. Nippon Suisan Gakkaishi 44: 1179–1182.

    Article  Google Scholar 

  • Shoji J., and M. Tanaka. 2008. Recruitment processes of Japanese sea bass in the Chikugo estuary, Japan: shift from density-independence to density-dependence during the early life stages. Journal of Northwest Atlantic Fishery Science 41: 85–91.

    Article  Google Scholar 

  • Shoji N., K. Sato, and M. Ozaki. 2002. Distribution and utilization of the stock. In Temperate bass and biodiversity, eds. M. Tanaka, andI. Kinoshita, 9–20. Tokyo: Koseisha-Koseikaku.

  • Suzuki K.W., R. Sugimoto, A. Kasai, J. Shoji, K. Nakayama, and M. Tanaka. 2007. Dynamics of particulate organic matter in the estuarine turbidity maximum of the Chikugo River, Ariake Sea, in spring. Bulletin of the Japanese Society of Fisheries Oceanography 71: 190–198.

    Google Scholar 

  • Suzuki K.W., A. Kasai, T. Isoda, K. Nakayama, and M. Tanaka. 2008. Distinctive stable isotope ratios in important zooplankton species in relation to estuarine salinity gradients: potential tracer of fish migration. Estuarine, Coastal and Shelf Science 78: 541–550.

    Article  Google Scholar 

  • Suzuki K.W., A. Kasai, T. Isoda, K. Nakayama, and M. Tanaka. 2013. Distinctive copepod community of the estuarine turbidity maximum: comparative observations in three macrotidal estuaries (Chikugo, Midori, and Kuma rivers), southwestern Japan. Journal of Oceanography 69: 15–33.

    Article  Google Scholar 

  • Suzuki K.W., Y. Kanematsu, K. Nakayama, and M. Tanaka. 2014. Microdistribution and feeding dynamics of Coilia nasus (Engraulidae) larvae and juveniles in relation to the estuarine turbidity maximum of the macrotidal Chikugo River estuary, Ariake Sea, Japan. Fisheries Oceanography 23: 157–171.

    Article  Google Scholar 

  • Takahashi K., and K. Kawaguchi. 1997. Diel and tidal migrations of the sand-burrowing mysids, Archaeomysis kokuboi, A. japonica and Iiella ohshimai, in Otsuchi Bay, northeastern Japan. Marine Ecology Progress Series 148: 95–107.

    Article  Google Scholar 

  • Tamura Y., M. Moteki, T. Yokoo, and H. Kohno. 2013. Occurrence patterns and ontogenetic intervals based on the development of swimming- and feeding-related characters in larval and juvenile Japanese sea bass (Lateolabrax japonicus) in Tokyo Bay. La mer 51: 13–29.

    Google Scholar 

  • Toda H., M. Takahashi, and S. Ichimura. 1982. Abundance and life history of Neomysis intermedia Czerniawsky in Lake Kasumigaura. Hydrobiologia 93: 31–39.

    Article  Google Scholar 

  • Tomiyama T., and M. Omori. 2008. Habitat selection of stone and starry flounders in an estuary in relation to feeding and survival. Estuarine, Coastal and Shelf Science 79: 475–482.

    Article  Google Scholar 

  • Van der Veer H.W., R. Berghahn, J.M. Miller, and A.D. Rijnsdorp. 2000. Recruitment in flatfish, with special emphasis on North Atlantic species: progress made by the Flatfish Symposia. ICES Journal of Marine Science 57: 202–215.

    Article  Google Scholar 

  • Watanabe, K., Kasai, A., Antonio E.S., Suzuki, K., Ueno, M., and Yamashita Y. 2014. Influence of salt-wedge intrusion on ecological processes at lower trophic levels in the Yura estuary, Japan. Estuarine, Coastal and Shelf Science In press.

  • Werner E.E., and J.F. Gilliam. 1984. The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology, Evolution, and Systematics 15: 393–425.

    Article  Google Scholar 

  • Werner E.E., and G.G. Mittelbach. 1981. Optimal foraging: field tests of diet choice and habitat switching. American Zoologist 21: 813–829.

    Article  Google Scholar 

  • Yamada H., K. Sato, S. Nagahora, A. Kumagai, and Y. Yamashita. 1998. Feeding habits of the Japanese flounder Paralichthys olivaceus in Pacific coastal waters of Tohoku district, northern Japan. Nippon Suisan Gakkaishi 64: 249–258.

    Article  Google Scholar 

  • Yamamoto M., H. Makino, J. Kobayashi, and O. Tominaga. 2004. Food organisms and feeding habits of larval and juvenile Japanese flounder Paralichthys olivaceus at Ohama Beach in Hiuchi-Nada, the central Seto Inland Sea, Japan. Fisheries Science 70: 1098–1105.

    Article  CAS  Google Scholar 

  • Yamashita Y., M. Tanaka, and J.M. Miller. 2001. Ecophysiology of juvenile flatfish in nursery grounds. Journal of Sea Research 45: 205–218.

    Article  Google Scholar 

  • Yamazaki Y. 2002. Effectiveness of hatchery-raised juveniles released to a brackish lake Hinuma. In Temperate bass and biodiversity, eds. M. Tanaka, andI. Kinoshita, 32–43. Tokyo: Koseisha-Koseikaku.

  • Yube Y., T. Iseki, M. Hibino, K. Mizuno, K. Nakayama, and M. Tanaka. 2006. Daily age and food habits of Lateolabrax latus larvae and juveniles occurring in the innermost shallow waters of Uwajima Bay, Japan. Fisheries Science 72: 1236–1249.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the Coastal Ecosystem Complex Project of the Ocean Resource Use Promotion Technology Development Program, MEXT of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiki Fuji.

Additional information

Responsible editor: Karin E. Limburg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuji, T., Kasai, A., Ueno, M. et al. The Importance of Estuarine Production of Large Prey for the Growth of Juvenile Temperate Seabass (Lateolabrax japonicus). Estuaries and Coasts 39, 1208–1220 (2016). https://doi.org/10.1007/s12237-015-0051-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-015-0051-3

Keywords

Navigation