Skip to main content

Advertisement

Log in

An Assessment of the Implications of Seasonal Precipitation and Anthropogenic Influences on a Mangrove Ecosystem Using Phytoplankton as Proxies

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The present study aims at finding out the implications of seasonal precipitation in bringing about habitat variability in Sundarbans, the world’s largest mangrove ecoregion. This work takes into consideration datasets of 2010 and 2013 from a long-term dataset that is presently being collected for Sundarbans mangrove ecoregion (SBOTS—Sundarbans Biological Observatory Time Series). The purpose of selecting these two datasets was mainly because of the differences in seasonal precipitation which was significantly higher in 2013 as compared to 2010. The study area was selected at the confluence of a creek and estuary where tidal variations were pronounced due to the proximity of the Bay of Bengal. The two stations were specifically selected to spatially segregate the effects of seasonal precipitation and tidal influences especially with regard to habitat variability. Analysis of abiotic variables and nutrient status by a combination of quantitative estimation and statistical methods clearly suggested that habitat variability of the study area was brought about by seasonal precipitation mainly with regard to nitrate concentrations and pH. However, salinity variations remained independent of seasonal precipitation, underlying the importance of tidal fluctuations in this area. The biotic community (phytoplankton) was dominated by diatoms with intermittent availability of chlorophytes and dinoflagellates showing both spatial and temporal changes. Thus, seasonal precipitation along with anthropogenic activities played important role in bringing about habitat variability of the study area with a concomitant effect on spatial and temporal patterns in phytoplankton population in Sundarbans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Admiraal, W.P., D.M. Breugem, H.A. Jacobs, and E.D. De Ruyter Van Steveninck. 1990. Fixation of dissolved silicate and sedimentation of biogenic silica in the lower Rhine during diatom blooms. Biogeochemistry 9: 175–190.

    Article  CAS  Google Scholar 

  • Arhonditsis, G.B., C.A. Stow, H.W. Paerl, L.M. Valdes-Weaver, L.J. Steinberg, and K.H. Reckhow. 2007. Delineation of the role of nutrient dynamics and hydrologic forcing on phytoplankton patterns along a freshwater-marine continuum. Ecological Modelling 208: 230–246.

    Article  CAS  Google Scholar 

  • Banerjee, A., and S.C. Santra. 1999. Plankton population and population density of the Sundarbans mangrove estuary of West Bengal (India). In Sundarbans Mangal, ed. D.N. Guha Bakshi, P. Sanyal, and K.R. Naskar. Calcutta: Naya Prokash.

    Google Scholar 

  • Bhattacharjee, D., B. Samanta, A.A. Danda, and P. Bhadury. 2013. Temporal succession of phytoplankton assemblages in a tidal creek system of the Sundarbans mangroves—An integrated approach. International Journal of Biodiversity 2013: 1–15.

    Article  Google Scholar 

  • Biswas, H., S.K. Mukhopadhyay, T.K. De, S. Sen, and T.K. Jana. 2004. Biogenic controls on the air-water carbon dioxide exchange in the Sundarban mangrove environment, northeast coast of bay of Bengal, India. Limnology and Oceanography 49(1): 95–101.

    Article  CAS  Google Scholar 

  • Biswas, H., M. Dey, D. Ganguly, T.K. De, S. Ghosh, and T.K. Jana. 2010. Comparative analysis of phytoplankton composition and abundance over a two-decade period at the land-ocean boundary of a tropical mangrove ecosystem. Estuaries and Coasts 33(2): 384–394.

    Article  CAS  Google Scholar 

  • Cabecinha, E., R. Cortes, J. Cabral, T. Ferreira, M. Lourenco, and M. Pardal. 2009. Multi-scale approach using phytoplankton as a first step towards the definition of the ecological status of reservoirs. Ecological Indicators 9: 240–255.

    Article  CAS  Google Scholar 

  • Carlsson, P., and E. Graneli. 1993. Availability of humic bound nitrogen for coastal phytoplankton. Estuarine, Coastal and Shelf Science 36: 433–447.

    Article  CAS  Google Scholar 

  • Chaudhuri, K., S. Manna, K.S. Sarma, P. Naskar, S. Bhattacharyya, and M. Bhattacharyya. 2012. Physicochemical and biological factors controlling water column metabolism in Sundarbans estuary. India. Aquatic Biosystems. doi:10.1186/2046-9063-8-26.

    Google Scholar 

  • Cloern, J.E. 1996. Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco bay, California. Reviews of Geophysics 34(2): 127–168.

    Article  CAS  Google Scholar 

  • Comin, F.A., and I. Valiela. 1993. On the controls of phytoplankton abundance and production in coastal lagoons. Journal of Coastal Research 9(4): 895–906.

    Google Scholar 

  • Conley, D.J. 1997. Riverine contribution of biogenic silica to the oceanic silica budget. Limnology and Oceanography 42: 774–777.

    Article  CAS  Google Scholar 

  • Danda, A. 2010. Sundarbans: Future imperfect climate adaptation report. WWF India 1–36.

  • Dell’ Anno, A., M. Fabiano, S. Bompadre, M. Armeni, L. Leone, and R. Danovaro. 1999. Phytopigment and DNA determinations in longtime formalin-preserved trap samples. Marine Ecology Progress Series 191: 71–77.

    Article  Google Scholar 

  • Doney, S.C., N. Mahowald, I. Lima, R.A. Feely, F.T. Mackenzie, J.F. Lamarque, and P.J. Rasch. 2007. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proceedings of the National Academy of Sciences of the United States of America 104(37): 14580–14585.

    Article  CAS  Google Scholar 

  • Duce, R.A., et al. 2008. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320: 893–897.

    Article  CAS  Google Scholar 

  • Dziock, F., K. Henle, F. Foeckler, K. Follner, and M. Scholz. 2006. Biological indicator systems in floodplains—A review. International Review of Hydrobiology 91: 271–291.

    Article  Google Scholar 

  • Falkowski, P.G., and C. Davis. 2004. Natural proportions. Nature 431: 131.

    Article  CAS  Google Scholar 

  • Ferreira, J.G., W.J. Wolff, T.C. Simas, and S.B. Bricker. 2005. Does biodiversity of estuarine phytoplankton depends on hydrology? Ecological Modelling 187: 513–523.

    Article  Google Scholar 

  • Finch, M.S., D.J. Hydes, C.H. Clayson, B. Weigl, J. Dakin, and P. Gwilliam. 1998. A low power ultra violet spectrophotometer for measurement of nitrate in seawater: Introduction, calibration and initial sea trials. Analytica Chimica Acta 377(2–3): 167–177.

    Article  CAS  Google Scholar 

  • Galloway, J.N., et al. 2004. Nitrogen cycles: Past, present and future. Biogeochemistry 70: 153–226.

    Article  CAS  Google Scholar 

  • Galloway, J.N., A.R. Townsend, J.W. Erisman, M. Bekunda, Z. Cai, J.R. Freney, L.A. Martinelli, S.P. Seitzinger, and M.A. Sutton. 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320: 889–892.

    Article  CAS  Google Scholar 

  • Guerzoni, Stefano, Roy Chester, François Dulac, Barak Herut, Marie- Dominique Loÿe-Pilot, Chris Measures, Christophe Migon, Emanuela Molinaroli, Cyril Moulin, Paolo Rossini, Cemal Saydam, Alexandre Soudine, and Patrizia Ziveri. 1999. The role of atmospheric deposition in the biogeochemistry of the Mediterranean sea. Progress in Oceanography 44: 147–190.

    Article  Google Scholar 

  • Harrison, P.J., N. Khan, K. Yin, M. Saleem, N. Bano, M. Nisa, S.I. Ahmed, N. Rizvi, and F. Azam. 1997. Nutrient and phytoplankton dynamics in two mangrove tidal creeks of the Indus river delta Pakistan. Marine Ecology Progress Series 157: 13–19.

    Article  CAS  Google Scholar 

  • Hecky, R.E., and P. Kilham. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnology and Oceanography 33(4, part 2): 796–822.

    Article  CAS  Google Scholar 

  • Hillebrand, H., C.D.D. Durselen, U. Kirschtel, T. Pollinghe, and T. Zohary. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Holmes, R.W. 1970. The Secchi disk in turbid coastal zones. Limnology and Oceanography 15: 688–694.

    Article  Google Scholar 

  • Krishnamurthy, Aparna, J. Keith Moore, Charles S. Zender, and Chao Luo. 2007. Effects of atmospheric inorganic nitrogen deposition on ocean biogeochemistry. Journal of Geophysical Research. 112 (G02019) doi:10.1029/2006JG000334

  • Liddicoat, M.L., S. Tibbitts, and E.L. Butler. 1975. The determination of ammonia in seawater. Limnology and Oceanography 20: 131.

    Article  CAS  Google Scholar 

  • Lopez-Flores, R., D. Boix, A. Badosa, S. Brucet, and X. Quintana. 2006. Pigment composition and size distribution of phytoplankton in a confined Mediterranean salt marsh ecosystem. Marine Biology 149: 1313–1324.

    Article  Google Scholar 

  • Macdonald, J.D. 1869. On the structure of the Diatomaceous frustules and its genetic cycle. Annals and Magazine of Natural History: Series 4. 3(13): doi:10.1080/00222936908695866.

  • Mamun, M.M., M.G. Sarower, M.A. Ali, S.M.B. Rahman, and K.A. Huq. 2009. Abundance and distribution of plankton in the Sundarbans mangrove forest. Journal of Innovation and Development Strategy 3(3): 43–54.

    Google Scholar 

  • Manna, S., K. Chaudhuri, S. Bhattacharyya, and M. Bhattacharyya. 2010. Dynamics of Sundarban estuarine ecosystem: Eutrophication induced threat to mangroves. Saline Systems 68: 1–16.

    Google Scholar 

  • Menden-Deuer, S., and E.J. Lessard. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45: 569–579.

    Article  CAS  Google Scholar 

  • Moran, M.A., and R.E. Hodson. 1994. Support of bacterioplankton production by dissolved humic substances from three marine environments. Marine Ecology Progress Series 110: 241–247.

    Article  CAS  Google Scholar 

  • Moustaka-Gouni, M., et al. 2006. Plankton food web structure in a eutrophic polymictic lake with a history in toxic cyanobacterial blooms. Limnology and Oceanography 51: 715–727.

    Article  Google Scholar 

  • Mukhopadhyay, S.K. 2007. The Hooghly estuarine system, NE coast of bay of Bengal. NIO, Goa, India: India. Workshop on Indian Estuaries

  • Nixon, S.W., and M.E.Q. Pilson. 1983. Nitrogen in estuarine and coastal marine ecosystems. In Nitrogen in the marine environment, ed. E.J. Carpenter and D.G. Capone, 565–648. New York: Academic.

    Chapter  Google Scholar 

  • Onitsuka, Goh, Uno Itsushi, Yanagi Tetsuo, and Yoon Jong-Hwan. Modeling the effects of atmospheric nitrogen input on biological production in the Japan Sea. Journal of Oceanography. 65(3): 433–438.

  • Pfitzer, E. 1869. U¨ber den Bau und Zellteilung der Diatomeen. Bot Ztg 27: 774–776.

    Google Scholar 

  • Pielou, E.C. 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13: 131–144.

    Article  Google Scholar 

  • Ramette, Alban. 2007. Multivariate analyses in microbial ecology. FEMS Microbiology Ecology 62(2): 142–160.

    Article  CAS  Google Scholar 

  • Redfield, A.C. 1963. The influence of organisms on the composition of seawater. In The sea, vol. II, ed. M.N. Hill, 26–77. New York: Wiley.

    Google Scholar 

  • Rodhe, H., F. Dentener, and M. Schulz. 2002. The global distribution of acidifying wet deposition. Environmental Science & Technology 36(20): 4382–4388.

    Article  CAS  Google Scholar 

  • Romo, S., and M.R. Miracle. 1995. Diversity of the phytoplankton assemblages of a polymictic hypertrophic lake. Archives of Hydrobiology 132: 363–384.

    Google Scholar 

  • Romo, S., E. Van Donk, R. Gylstra, and R.D. Gulati. 1996. A multivariate analysis of phytoplankton and food web changes in a shallow biomanipulated lake. Freshwater Biology 36: 683–696.

    Article  Google Scholar 

  • S.M.R.C. 2003. The vulnerability assessment of the SAARC Coastal Region due to sea level rise: Bangladesh case study. Dhaka: SAARC Meteorological Research Center.

    Google Scholar 

  • Sagert, S., T. Rieling, A. Eggert, and H. Schubert. 2008. Development of a phytoplankton indicator system for the ecological assessment of brackish coastal waters (German Baltic Sea coast). Hydrobiologia 611: 91–103.

    Article  CAS  Google Scholar 

  • Saha, S.B., S.B. Bhattacharyya, A. Mitra, B.K. Pandey, and A. Choudhury. 2001. Physicochemical characteristics in relation to pollution and phytoplankton production potential of a brackish water ecosystem of Sundarbans in West Bengal. Tropical Ecology 42(2): 199–205.

    CAS  Google Scholar 

  • Samanta, B., and P. Bhadury. 2014. Analysis of diversity of chromophytic phytoplankton in a mangrove ecosystem using rbcl gene sequencing. Journal of Phycology. doi:10.1111/jpy.12163.

    Google Scholar 

  • Shannon, C.E., and W. Weaver. 1949. The mathematical theory of communication. Urbana: University of Illinois Press.

    Google Scholar 

  • Spalding, M.D., F. Blasco, and C.D. Field (eds.). 1997. World mangrove atlas. Okinawa: The International Society for Mangrove Ecosystems.

    Google Scholar 

  • Specchiulli, Antonietta, Silvia Focardi, Monia Renzi, Tommaso Scirocco, Lucrezia Cilenti, Paolo Breber, and Simone Bastianoni. 2008. Environmental heterogeneity patterns and assessment of trophic levels in two Mediterranean lagoons: Orbetello and Varano, Italy. Science of the Total Environment 402(2–3): 285–298.

    Article  CAS  Google Scholar 

  • Strickland, J.D.H., and T.R. Parsons. 1972. A practical handbook of seawater analysis. Bulletin of Fisheries Research Biodeversity Canada 167: 1–310.

    Google Scholar 

  • Sun, J., D.A. Hutchins, Y. Feng, E.L. Seubert, D.A. Caron, and F.X. Fu. 2011. Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-nitzschia multiseres. Limnology and Oceanography 56: 829–840.

    Article  CAS  Google Scholar 

  • Sylvestre, F., D. Guiral, and J.P. Debenay. 2004. Modern diatom distribution in mangrove swamps from the Kaw Estuary (French Guiana). Marine Geology 208(2–4): 281–293.

    Article  Google Scholar 

  • Talane-McManus, L., H.H. Kremer, and J.I. Marshall Crossland. 2001. Biogeochemical and human dimensions of coastal functioning and change in Southeast Asia. Final report of the SARC/ WOTRO/ LOICZ project 1996–1999. LOICZ, Reports and studies, vol. 17. The Netherlands: LOICZ, Texel, ii-277.

  • Testa, J., W. Kemp, W. Boynton, and J. Hagy. 2008. Long-term changes in water quality and productivity in the Patuxent River Estuary: 1985 to 2003. Estuaries and Coasts 31: 1021–1037.

    Article  CAS  Google Scholar 

  • Turner, R.E., N. Qureshi, and N.N. Rabalais. 1998. Fluctuating silicate: Nitrate ratios and coastal plankton food webs. Proceedings of the National Academy of Sciences of the United States of America 95(22): 13048–13051.

    Article  CAS  Google Scholar 

  • Utermöhl, H. 1958. Zur vervollkommung der quantitative phytoplankton-methodik. Mitteilumgen Int Verejunigung Theor Angewandtet Limnol 9: 1–38.

    Google Scholar 

  • Valdes-Weaver, L.M., M.F. Piehler, J.L. Pickney, K.E. Howe, K. Ros- Signol, and H.W. Paerl. 2006. Long-term temporal and spatial trends in phytoplankton biomass and class-level taxonomic composition in the hydrologically-variable Neuse-Pamlico estuarine continuum, North Carolina, USA. Limnology and Oceanography 51: 1410–1420.

    Article  Google Scholar 

  • van der Molen, J.S., and R. Perissinotto. 2011. Microalgal productivity in an estuarine lake during a drought cycle: The St. Lucia Estuary, South Africa. Estuarine, Coastal and Shelf Science 92(1): 1–9.

    Article  Google Scholar 

  • Verlencar, X.L., and S. Desai. 2004. Phytoplankton identification manual. Goa: NIO.

    Google Scholar 

  • Walsh, J.J., G.T. Rowe, R.L. Iverson, and C.P. Mcroy. 1981. Biological export of shelf carbon is a sink of the global CO2 cycle. Nature 291: 196–201.

    Article  CAS  Google Scholar 

  • Walsh, I.D., S.P. Chung, M.J. Richardson, and W.D. Gardner. 1995. The diel cycle in the integrated particle load in the equatorial pacific: A comparison with primary production. Deep Sea Research Part II: Topical Studies in Oceanography 42(2–3): 465–477.

    Article  CAS  Google Scholar 

  • Wetzel, R.L., and G.E. Likens. 1991. Composition and biomass of phytoplankton, limnological analysis, 2nd ed. New York: Springer- Verlag.

    Book  Google Scholar 

  • Zhang, Y., Q. Yu, W. Ma, and L. Chen. 2010. Atmospheric deposition of inorganic nitrogen to the eastern China seas and its implications to marine biogeochemistry. Journal of Geophysical Research. 115: doi:10.1029/2009JD012814

Download references

Acknowledgments

The authors are thankful to Ministry of Earth Science (MLRP Program; MoES), Government of India and DBT Postdoctoral Research Associateship for providing the financial assistance to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punyasloke Bhadury.

Additional information

Communicated by James L. Pinckney

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, A.K., Das, M., Philip, P. et al. An Assessment of the Implications of Seasonal Precipitation and Anthropogenic Influences on a Mangrove Ecosystem Using Phytoplankton as Proxies. Estuaries and Coasts 38, 854–872 (2015). https://doi.org/10.1007/s12237-014-9854-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9854-x

Keywords

Navigation