Skip to main content

Advertisement

Log in

Can a Single Species Challenge Paradigms of Salt Marsh Functioning?

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Over the history of ecology, well-established generalizations were refined or even changed after the appearance or consideration of new evidence. Here, we review results obtained in Southwestern Atlantic salt marshes (between southern Brazil −32° 1′ S- and the Argentinean Patagonia −53° 48′ S-). Most of these salt marshes are inhabited by the intertidal burrowing crab Neohelice granulata, a species that influences many ecological processes through bioturbation and herbivory. The experimental evaluation of these processes shows that in some cases, the results were not consistent with generalizations and models of salt marsh ecological functioning. However, this does not imply that the generalizations grounded mainly on the results from North American sites are not valid. In turn, we suggest that these apparently conflicting results emerged because two major processes, herbivory and bioturbation, have been overlooked until recently. Thus, their relative contribution has not been included in the models of salt marsh functioning. In conclusion, we believe that there is a need for performing parallel and simultaneous experiments comparing distant sites with varying environmental (i.e., abiotic and biotic) conditions to be able to uncover common processes and causes of contingencies. Particularly, Southwestern Atlantic salt marshes could lead the way in providing information to better incorporate herbivory and bioturbation into current models or paradigms about how salt marshes work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adam, P. 1993. Saltmarsh ecology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Alberti, J., M. Escapa, P. Daleo, O. Iribarne, B.R. Silliman, and M. Bertness. 2007a. Local and geographic variation in grazing intensity by herbivorous crabs in SW Atlantic salt marshes. Marine Ecology Progress Series 349: 235–243.

    Google Scholar 

  • Alberti, J., D. Montemayor, F. Álvarez, A. Méndez Casariego, T. Luppi, A. Canepuccia, J.P. Isacch, and O. Iribarne. 2007b. Changes in rainfall pattern affect crab herbivory rates in a SW Atlantic salt marsh. Journal of Experimental Marine Biology and Ecology 353: 126–133.

    Google Scholar 

  • Alberti, J., M. Escapa, O. Iribarne, B. Silliman, and M. Bertness. 2008. Crab herbivory regulates plant facilitative and competitive processes in Argentinean marshes. Ecology 89: 155–164.

    Google Scholar 

  • Alberti, J., M. Escapa, P. Daleo, A. Méndez Casariego, and O. Iribarne. 2010a. Crab bioturbation and herbivory reduce pre- and post-germination success of Sarcocornia perennis in bare patches of SW Atlantic salt marshes. Marine Ecology Progress Series 400: 55–61.

    Google Scholar 

  • Alberti, J., A. Méndez Casariego, P. Daleo, E. Fanjul, B. Silliman, M. Bertness, and O. Iribarne. 2010b. Abiotic stress mediates top-down and bottom-up control in a Southwestern Atlantic salt marsh. Oecologia 163: 181–191.

    Google Scholar 

  • Alberti, J., A. Canepuccia, J. Pascual, C. Pérez, and O. Iribarne. 2011a. Joint control by rodent herbivory and nutrient availability of plant diversity in a salt marsh-salty steppe transition zone. Journal of Vegetation Science 22: 216–224.

    Google Scholar 

  • Alberti, J., J. Cebrian, A. Méndez Casariego, A. Canepuccia, M. Escapa, and O. Iribarne. 2011b. Effects of nutrient enrichment and crab herbivory on a SW Atlantic salt marsh productivity. Journal of Experimental Marine Biology and Ecology 405: 99–104.

    CAS  Google Scholar 

  • Allen, J.R.L. 2000. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews 19: 1155–1231.

    Google Scholar 

  • Alongi, D.M. 1998. Coastal ecosystem processes. Boca Raton: CRC Press.

    Google Scholar 

  • Bakker, J.P., J. de Leeuw, K.S. Dijkema, P.C. Leendertse, H.H.T. Prins, and J. Rozema. 1993. Salt marshes along the coast of The Netherlands. Hydrobiologia 265: 73–95.

    Google Scholar 

  • Bertness, M.D. 1985. Fiddler crab regulation of Spartina alterniflora production on a New England salt marsh. Ecology 66: 1042–1055.

    Google Scholar 

  • Bertness, M.D. 1991a. Interespecific interactions among high marsh perennials in a New England salt marsh. Ecology 72: 125–137.

    Google Scholar 

  • Bertness, M.D. 1991b. Zonation of Spartina patens and Spartina alterniflora in New England salt marsh. Ecology 72: 138–148.

    Google Scholar 

  • Bertness, M., and R.M. Callaway. 1994. Positive interactions in communities. Trends in Ecology and Evolution 9: 191–193.

    CAS  Google Scholar 

  • Bertness, M.D., and S.D. Hacker. 1994. Physical stress and positive associations among marsh plants. American Naturalist 144: 363–372.

    Google Scholar 

  • Bertness, M.D., and G.H. Leonard. 1997. The role of positive interactions in communities: lessons from intertidal habitats. Ecology 78: 1976–1989.

    Google Scholar 

  • Bertness, M.D., C. Crain, C. Holdredge, and N. Sala. 2008. Eutrophication and consumer control of New England salt marsh primary productivity. Conservation Biology 22: 131–139.

    Google Scholar 

  • Bohrer, K.E., C.F. Friese, and J.P. Amon. 2004. Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza 14: 329–337.

    Google Scholar 

  • Bortolus, A., and O.O. Iribarne. 1999. The effect of the southwestern Atlantic burrowing crab Chasmagnathus granulata on a Spartina salt-marsh. Marine Ecology Progress Series 178: 79–88.

    Google Scholar 

  • Bortolus, A., E. Schwindt, and O. Iribarne. 2002. Positive plant-animal interactions in the high marsh of an Argentinean coastal lagoon. Ecology 83: 733–742.

    Google Scholar 

  • Bortolus, A., E. Schwindt, P.J. Bouza, and Y.L. Idaszkin. 2009. A characterization of Patagonian salt marshes. Wetlands 29: 772–780.

    Google Scholar 

  • Botto, F., and O. Iribarne. 2000. Contrasting effects of two burrowing crabs (Chasmagnathus granulata and Uca uruguayensis) on sediment composition and transport in estuarine environments. Estuarine, Coastal and Shelf Science 51: 141–151.

    CAS  Google Scholar 

  • Botto, F., I. Valiela, O. Iribarne, P. Martinetto, and J. Alberti. 2005. Impact of burrowing crabs on C and N sources, control, and transformation in sediments and food webs of SW Atlantic estuaries. Marine Ecology Progress Series 293: 155–164.

    Google Scholar 

  • Botto, F., O. Iribarne, J. Gutierrez, J. Bava, A. Gagliardini, and I. Valiela. 2006. Ecological importance of passive deposition of organic matter into burrows of the SW Atlantic crab Chasmagnathus granulatus. Marine Ecology Progress Series 312: 201–210.

    Google Scholar 

  • Botto, F., E. Gaitán, H. Mianzan, M. Acha, D. Giberto, A. Schiariti, and O. Iribarne. 2011. Origin of resources and trophic pathways in a large SW Atlantic estuary: an evaluation using stable isotopes. Estuarine, Coastal and Shelf Science 92: 70–77.

    Google Scholar 

  • Bouchard, V., and J.C. Lefeuvre. 2000. Primary production and macro-detritus dynamics in a European salt marsh: carbon and nitrogen budgets. Aquatic Botany 67: 23–42.

    CAS  Google Scholar 

  • Bruno, J.F. 2000. Facilitation of cobble beach plant communities through habitat modification by Spartina alterniflora. Ecology 81: 1179–1192.

    Google Scholar 

  • Bruno, J.F., J.J. Stachowicz, and M.D. Bertness. 2003. Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution 18: 119–125.

    Google Scholar 

  • Burkepile, D.E., and M.E. Hay. 2006. Herbivore vs. nutrient control of marine primary producers: context-dependent effects. Ecology 87: 3128–3139.

    Google Scholar 

  • Callaway, R.M. 1997. Positive interactions in plant communities and the individualistic-continuum concept. Oecologia 112: 143–149.

    Google Scholar 

  • Canepuccia, A.D., J. Alberti, P. Daleo, J. Pascual, J.L. Farina, and O.O. Iribarne. 2010. Ecosystem engineering by burrowing crabs increases cordgrass mortality caused by stem-boring insects. Marine Ecology Progress Series 404: 151–159.

    Google Scholar 

  • Cardoni, D.A., J.P. Isacch, M.E. Fanjul, M. Escapa, and O.O. Iribarne. 2011. Relationship between anthropogenic sewage discharge, marsh structure and bird assemblages in an SW Atlantic saltmarsh. Marine Environmental Research 71: 122–130.

    CAS  Google Scholar 

  • Carvalho, L.M., P.M. Correia, and M.A. Martins-Loução. 2004. Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza 14: 165–170.

    Google Scholar 

  • Castillo, J.M., L. Fernández-Baco, E.M. Castellanos, C.J. Luque, M.E. Figueroa, and A.J. Davy. 2000. Lower limits of Spartina densiflora and S. maritima in a Mediterranean salt marsh determined by different ecophysiological tolerances. Journal of Ecology 88: 801–812.

    Google Scholar 

  • Cicchetti, G., and R.J. Diaz. 2002. Types of salt marsh edge and export of trophic energy from marshes to deeper habitats. In Concepts and controversies in tidal marsh ecology, ed. M.P. Weinstein and D.A. Kreeger, 515–541. Netherlands: Springer.

    Google Scholar 

  • Connell, J.H. 1961. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42: 710–723.

    Google Scholar 

  • Connolly, R.M., J.S. Hindell, and D. Gorman. 2005. Seagrass and epiphytic algae support nutrition of a fisheries species, Sillago schomburgkii, in adjacent intertidal habitats. Marine Ecology Progress Series 286: 69–79.

    Google Scholar 

  • Correl, D.L. 1981. Nutrient mass balances for the watershed, headwaters intertidal zones, and basin of the Rhode River estuary. Limnology and Oceanography 26: 1142–1149.

    Google Scholar 

  • Costa, C.S.B., and A.J. Davy. 1992. Coastal saltmarsh communities of Latin America. In Coastal plant communities of Latin America, vol. 12, ed. U. Seeliger, 179–199. New York: Academic.

    Google Scholar 

  • Costa, C.S.B., J.C. Marangoni, and A.M.G. Azevedo. 2003. Plant zonation in irregularly flooded salt marshes: relative importance of stress tolerance and biological interactions. Journal of Ecology 91: 951–965.

    Google Scholar 

  • Couch, C.A. 1989. Carbon and nitrogen stable isotopes of meiobenthos and their food resources. Estuarine, Coastal and Shelf Science 28: 433–441.

    Google Scholar 

  • Crain, C.M. 2008. Interactions between marsh plant species vary in direction and strength depending on environmental and consumer context. Journal of Ecology 96: 166–173.

    Google Scholar 

  • Crain, C.M., and M.D. Bertness. 2006. Ecosystem engineering across environmental gradients: implications for conservation and management. Bioscience 56: 211–218.

    Google Scholar 

  • Crain, C.M., L.K. Albertson, and M.D. Bertness. 2008. Secondary succession dynamics in estuarine marshes across landscape-scale salinity gradients. Ecology 89: 2889–2899.

    Google Scholar 

  • D’Alpaos, A., C. Da Lio, and M. Marani. 2012. Biogeomorphology of tidal landforms: physical and biological processes shaping the tidal landscape. Ecohydrology 5: 550–562.

    Google Scholar 

  • Daehler, C.C., and D.R. Strong. 1995. Impact of high herbivore densities on introduced smooth cordgrass, Spartina alterniflora, invading San Francisco Bay, California. Estuaries 18: 409–417.

    Google Scholar 

  • Daleo, P., and O. Iribarne. 2009. The burrowing crab Neohelice granulata affects the root strategies of the cordgrass Spartina densiflora in SW Atlantic salt marshes. Journal of Experimental Marine Biology and Ecology 373: 66–71.

    Google Scholar 

  • Daleo, P., E. Fanjul, A. Méndez Casariego, B.R. Silliman, M.D. Bertness, and O. Iribarne. 2007. Ecosystem engineers activate mycorrhizal mutualism in salt marshes. Ecology Letters 10: 902–908.

    Google Scholar 

  • Daleo, P., J. Alberti, A. Canepuccia, M. Escapa, E. Fanjul, B.R. Silliman, M.D. Bertness, and O. Iribarne. 2008. Mycorrhizal fungi determine salt-marsh plant zonation depending on nutrient supply. Journal of Ecology 96: 431–437.

    Google Scholar 

  • Daleo, P., J. Alberti, and O. Iribarne. 2011. Crab herbivory regulates recolonization of disturbed patches in a southwestern Atlantic salt marsh. Oikos 120: 842–847.

    Google Scholar 

  • Daleo, P., J. Alberti, J. Pascual, A. Canepuccia, and O. Iribarne. 2014. Herbivory affects salt marsh succession dynamics by suppressing the recovery of dominant species. Oecologia 175: 335–343.

    Google Scholar 

  • Davidson, T.M., and C.E. De Rivera. 2010. Accelerated erosion of saltmarshes infested by the non-native burrowing crustacean Sphaeroma quoianum. Marine Ecology Progress Series 419: 129–136.

    Google Scholar 

  • de Deckere, E.M.G.T., T.J. Tolhurst, and J.F.C. de Brouwer. 2001. Destabilization of cohesive intertidal sediments by infauna. Estuarine, Coastal and Shelf Science 53: 665–669.

    Google Scholar 

  • Deegan, L.A., and R.H. Garritt. 1997. Evidence for spatial variability in estuarine food webs. Marine Ecology Progress Series 147: 31–47.

    Google Scholar 

  • Deegan, L.A., B.J. Peterson, and R. Portier. 1990. Stable isotopes and cellulase activity as evidence for detritus as a food source for juvenile Gulf menhaden. Estuaries 13: 14–19.

    Google Scholar 

  • Dunson, W.A., and J. Travis. 1991. The role of abiotic factors in community organization. American Naturalist 138: 1067–1091.

    Google Scholar 

  • Escapa, M., D.R. Minkoff, G.M.E. Perillo, and O. Iribarne. 2007. Direct and indirect effects of burrowing crab Chasmagnathus granulatus activities on erosion of southwest Atlantic Sarcocornia-dominated marshes. Limnology and Oceanography 52: 2340–2349.

    Google Scholar 

  • Escapa, M., G.M.E. Perillo, and O. Iribarne. 2008. Sediment dynamics modulated by burrowing crab activities in contrasting SW Atlantic intertidal habitats. Estuarine, Coastal and Shelf Science 80: 365–373.

    Google Scholar 

  • Esselink, P., G.J.F. Helder, B.A. Aerts, and K. Gerdes. 1997. The impact of grubbing by Greylag Geese (Anser anser) on the vegetation dynamics of a tidal marsh. Aquatic Botany 55: 261–279.

    Google Scholar 

  • Fanjul, E., M.A. Grela, and O. Iribarne. 2007. Effects of the dominant SW Atlantic intertidal burrowing crab Chasmagnathus granulatus on sediment chemistry and nutrient distribution. Marine Ecology Progress Series 341: 177–190.

    CAS  Google Scholar 

  • Fanjul, E., M.A. Grela, A. Canepuccia, and O. Iribarne. 2008. The Southwest Atlantic intertidal burrowing crab Neohelice granulata modifies nutrient loads of phreatic waters entering coastal area. Estuarine, Coastal and Shelf Sciences 79: 300–306.

    Google Scholar 

  • Fanjul, E., M.C. Bazterrica, M. Escapa, M.A. Grela, and O. Iribarne. 2011. Impact of crab bioturbation on benthic flux and nitrogen dynamics of Southwest Atlantic intertidal marshes and mudflats. Estuarine, Coastal and Shelf Sciences 92: 629–638.

    CAS  Google Scholar 

  • França, S., R.P. Vasconcelos, S. Tanner, C. Máguas, M.J. Costa, and H.N. Cabral. 2011. Assessing food web dynamics and relative importance of organic matter sources for fish species in two Portuguese estuaries: a stable isotope approach. Marine Environmental Research 72: 204–215.

    Google Scholar 

  • Furbish, C.E., and M. Albano. 1994. Selective herbivory and plant community structure in a mid-Atlantic salt marsh. Ecology 75: 1015–1022.

    Google Scholar 

  • Gallagher, J.L., W.J. Pfeiffer, and L.R. Pomeroy. 1976. Leaching and microbial utilization of dissolved organic carbon from leaves of Spartina alterniflora. Estuarine and Coastal Marine Science 4: 467–471.

    Google Scholar 

  • Galván, K., J.W. Fleeger, B. Peterson, D. Drake, L.A. Deegan, and D.S. Johnson. 2011. Natural abundance stable isotopes and dual isotope tracer additions help to resolve resources supporting a saltmarsh food web. Journal of Experimental Marine Biology and Ecology 410: 1–11.

    Google Scholar 

  • Gedan, K.B., C.M. Crain, and M.D. Bertness. 2009. Small-mammal herbivore control of secondary succession in New England tidal marshes. Ecology 90: 430–440.

    Google Scholar 

  • Gedan, K.B., M.L. Kirwan, E. Wolanski, E.B. Barbier, and B.R. Silliman. 2011. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic Change 106: 7–29.

    Google Scholar 

  • Gutiérrez, J.L., C.G. Jones, P.M. Groffman, S.E.G. Findlay, O.O. Iribarne, P.D. Ribeiro, and C.M. Bruschetti. 2006. The contribution of crab burrow excavation to carbon availability in surficial salt-marsh sediments. Ecosystems 9: 647–658.

    Google Scholar 

  • Handa, I.T., R. Harmsen, and R.L. Jefferies. 2002. Patterns of vegetation change and the recovery potential of degraded areas in a coastal marsh system of the Hudson Bay lowlands. Journal of Ecology 90: 86–99.

    Google Scholar 

  • Hart, M.M., R.J. Reader, and J.N. Klironomos. 2003. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends in Ecology & Evolution 18: 418–423.

    Google Scholar 

  • Hillebrand, H., D.S. Gruner, E.T. Borer, M.E.S. Bracken, E.E. Cleland, J.J. Elser, W.S. Harpole, J.T. Ngai, E.W. Seabloom, J.B. Shurin, and J.E. Smith. 2007. Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proceedings of the National Academy of Sciences 104: 10904–10909.

    CAS  Google Scholar 

  • Hoeksema, J.D., V.B. Chaudhary, C.A. Gehring, N.C. Johnson, J. Karst, R.T. Koide, A. Pringle, C. Zabinski, J.D. Bever, J.C. Moore, G.W.T. Wilson, J.N. Klironomos, and J. Umbanhowar. 2010. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters 13: 394–407.

    Google Scholar 

  • Holdredge, C., M.D. Bertness, and A.H. Altieri. 2009. Role of crab herbivory in die-off of New England salt marshes. Conservation Biology 23: 672–679.

    Google Scholar 

  • Hughes, R.G., and O.A.L. Paramor. 2004. On the loss of saltmarshes in south-east England and methods for their restoration. Journal of Applied Ecology 41: 440–448.

    Google Scholar 

  • Idaszkin, Y.L., A. Bortolus, and P.J. Bouza. 2011. Ecological processes shaping Central Patagonian salt marsh landscapes. Austral Ecology 36: 59–67.

    Google Scholar 

  • Iribarne, O., A. Bortolus, and F. Botto. 1997. Between-habitat differences in burrow characteristics and trophic modes in the southwestern Atlantic burrowing crab Chasmagnathus granulata. Marine Ecology Progress Series 155: 137–145.

    Google Scholar 

  • Iribarne, O., M. Bruschetti, M. Escapa, J. Bava, F. Botto, J. Gutierrez, G. Palomo, K. Delhey, P. Petracci, and A. Gagliardini. 2005. Small- and large-scale effect of the SW Atlantic burrowing crab Chasmagnathus granulatus on habitat use by migratory shorebirds. Journal of Experimental Marine Biology and Ecology 315: 87–101.

    Google Scholar 

  • Isacch, J.P., C.S.B. Costa, L. Rodríguez-Gallego, D. Conde, M. Escapa, D.A. Gagliardini, and O.O. Iribarne. 2006. Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. Journal of Biogeography 33: 888–900.

    Google Scholar 

  • Jefferies, R.L., A.P. Jano, and K.F. Abraham. 2006. A biotic agent promotes large-scale catastrophic change in the coastal marshes of Hudson Bay. Journal of Ecology 94: 234–242.

    Google Scholar 

  • Johnson, N.C., J.-H. Graham, and F.A. Smith. 1997. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytologist 135: 575–585.

    Google Scholar 

  • Khan, A.G. 1993. Occurrence and importance of mycorrhizae in aquatic trees of New South Wales, Australia. Mycorrhiza 3: 31–38.

    Google Scholar 

  • Kinney, E.L., and I. Valiela. 2013. Changes in δ15N in salt marsh sediments in a long-term fertilization study. Marine Ecology Progress Series 477: 41–52.

    CAS  Google Scholar 

  • Koch, F., and C.J. Gobler. 2009. The effects of tidal export from salt marsh ditches on estuarine water quality and plankton communities. Estuaries and Coasts 32: 261–275.

    CAS  Google Scholar 

  • Kuijper, D.P.J., and J.P. Bakker. 2005. Top-down control of small herbivores on salt-marsh vegetation along a productivity gradient. Ecology 86: 914–923.

    Google Scholar 

  • Kuijper, D.P.J., D.J. Nijhoff, and J.P. Bakker. 2004. Herbivory and competition slow down invasion of a tall grass along a productivity gradient. Oecologia 141: 452–459.

    CAS  Google Scholar 

  • Kwak, T.J., and J.B. Zedler. 1997. Food web analysis of southern California coastal wetlands using multiple stable isotopes. Oecologia 110: 262–277.

    Google Scholar 

  • Langlois, E., A. Bonis, and J.B. Bouzillé. 2003. Sediment and plant dynamics in saltmarshes pioneer zone: Puccinellia maritima as a key species? Estuarine, Coastal and Shelf Science 56: 239–249.

    Google Scholar 

  • Lawton, J.H. 1999. Are there general laws in ecology? Oikos 84: 177–192.

    Google Scholar 

  • Leonard, L.A., and A.L. Croft. 2006. The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuarine, Coastal and Shelf Science 69: 325–336.

    Google Scholar 

  • Levin, L.A., C. Neira, and E.D. Grosholz. 2006. Invasive cordgrass modifies wetland trophic function. Ecology 87: 419–432.

    Google Scholar 

  • Luppi, T.A., E.D. Spivak, and K. Anger. 2002. Postsettlement growth of two estuarine crab species, Chasmagnathus granulata and Cyrtograpsus angulatus (Crustacea, Decapoda, Grapsidae): laboratory and field investigations. Helgoland Marine Research 55: 293–305.

    Google Scholar 

  • MacArthur, R.H., and E.O. Wilson. 1967. The theory of island biogeography. New Jersey: Princeton University Press.

    Google Scholar 

  • Maestre, F.T., R.M. Callaway, F. Valladares, and C.J. Lortie. 2009. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. Journal of Ecology 97: 199–205.

    Google Scholar 

  • Mann, K.H. 1988. Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnology and Oceanography 33: 910–930.

    CAS  Google Scholar 

  • Mason, E. 1928. Note on the presence of mycorrhiza in the roots of salt marsh plants. New Phytologist 27: 193–195.

    Google Scholar 

  • McClelland, J.W., and I. Valiela. 1998. Linking nitrogen in estuarine producers to land-derived sources. Limnology and Oceanography 43: 577–585.

    CAS  Google Scholar 

  • McHugh, J.M., and J. Dighton. 2004. Influence of mycorrhizal inoculation, inundation period, salinity, and phosphorus availability on the growth of two salt marsh grasses, Spartina alterniflora Lois. and Spartina cynosuroides (l.) Roth., in nursery systems. Restoration Ecology 12: 533–545.

    Google Scholar 

  • Méndez Casariego, A., J. Alberti, T. Luppi, P. Daleo, and O. Iribarne. 2011. Habitat shifts and spatial distribution of the intertidal crab Neohelice (Chasmagnathus) granulata Dana. Journal of Sea Research 66: 87–94.

    Google Scholar 

  • Menge, B.A., and J.P. Sutherland. 1987. Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. American Naturalist 130: 730–757.

    Google Scholar 

  • Miller, S.P., and R.R. Sharitz. 2000. Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grass species. Functional Ecology 14: 738–748.

    Google Scholar 

  • Montemayor, D.I., M. Addino, E. Fanjul, M. Escapa, M.F. Alvarez, F. Botto, and O.O. Iribarne. 2011. Effect of dominant Spartina species on salt marsh detritus production in SW Atlantic estuaries. Journal of Sea Research 66: 104–110.

    Google Scholar 

  • Montemayor, D.I., A.D. Canepuccia, J. Pascual, and O.O. Iribarne. 2014. Aboveground biomass patterns of dominant Spartina species and their relationship with selected abiotic variables in Argentinean SW Atlantic marshes. Estuaries and Coasts 37: 411–420.

    Google Scholar 

  • Murray, J.M.H., A. Meadows, and P.S. Meadows. 2002. Biogeomorphological implications of microscale interactions between sediment geotechnics and marine benthos: a review. Geomorphology 47: 15–30.

    Google Scholar 

  • Needham, H., C. Pilditch, A. Lohrer, and S. Thrush. 2010. Habitat dependence in the functional traits of Austrohelice crassa, a key bioturbating species. Marine Ecology Progress Series 414: 179–193.

    Google Scholar 

  • Neumeier, U., and C.L. Amos. 2006. The influence of vegetation on turbulence and flow velocities in European salt-marshes. Sedimentology 53: 259–277.

    Google Scholar 

  • Newell, S.Y., R.D. Fallon, and J.D. Miller. 1989. Decomposition and microbial dynamics for standing, naturally positioned leaves of the salt-marsh grass Spartina alterniflora. Marine Biology 101: 471–481.

    Google Scholar 

  • Newell, S.Y., M.A. Moran, R. Wicks, and R.E. Hodson. 1995. Productivities of microbial decomposers during early stages of decomposition of leaves of a freshwater sedge. Freshwater Biology 34: 135–148.

    Google Scholar 

  • Nixon, S.W. 1980. Between coastal marshes and coastal waters—a review of twenty years of speculation and research on the role of salt marshes ad coastal waters in estuarine productivity and water chemistry. In Estuarine and wetland processes with emphasis on modeling, ed. P. Hamilton and K.B. McDonald, 437–526. New York: Plenum Press.

    Google Scholar 

  • Nixon, S.W. 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41: 199–219.

    Google Scholar 

  • Nixon, S.W. 2009. Eutrophication and the macroscope. Hydrobiologia 629: 5–19.

    CAS  Google Scholar 

  • Odum, W.E. 1988. Comparative ecology of tidal freshwater and salt marshes. Annual Review of Ecology and Systematics 19: 147–176.

    Google Scholar 

  • Odum, W.E. 2002. Tidal marshes as outwelling/pulsing systems. In Concepts and controversies in tidal marsh ecology, ed. M.P. Weinstein and D.A. Kreeger, 3–7. New York: Kluwer Academic Publishers.

    Google Scholar 

  • Olsson, P.A., and G. Tyler. 2004. Occurrence of non-mycorrhizal plant species in south Swedish rocky habitats is related to exchangeable soil phosphate. Journal of Ecology 92: 808–815.

    Google Scholar 

  • Paramor, O.A.L., and R.G. Hughes. 2005. Effects of the invertebrate infauna on early saltmarsh plant colonization of managed realignment areas in south-east England. Marine Ecology Progress Series 303: 61–71.

    Google Scholar 

  • Pennings, S.C., and M.D. Bertness. 2001. Salt marsh communities. In Marine community ecology, ed. M.D. Bertness, S.D. Gaines, and M. Hay, 289–316. Sunderland: Sinauer Associates.

    Google Scholar 

  • Pennings, S.C., and R.M. Callaway. 1992. Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology 73: 681–690.

    Google Scholar 

  • Pennings, S.C., E.R. Selig, L.T. Houser, and M.D. Bertness. 2003. Geographic variation in positive and negative interactions among salt marsh plants. Ecology 84: 1527–1538.

    Google Scholar 

  • Pennings, S.C., C.M. Clark, E.E. Cleland, S.L. Collins, L. Gough, K.L. Gross, D.G. Milchunas, and K.N. Suding. 2005a. Do individual plant species show predictable responses to nitrogen addition across multiple experiments? Oikos 110: 547–555.

    Google Scholar 

  • Pennings, S.C., M. Grant, and M.D. Bertness. 2005b. Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. Journal of Ecology 93: 159–167.

    Google Scholar 

  • Peterson, B.J., and R.W. Howarth. 1987. Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia. Limnology and Oceanography 32: 1195–1213.

    CAS  Google Scholar 

  • Pomeroy, L.R., and R.G. Wiegert. 1981. The ecology of a salt marsh. New York: Springer.

    Google Scholar 

  • Rand, T.A. 2000. Seed dispersal, habitat suitability and the distribution of halophytes across a salt marsh tidal gradient. Journal of Ecology 88: 608–621.

    Google Scholar 

  • Rand, T.A. 2004. Competition, facilitation, and compensation for insect herbivory in an annual salt marsh forb. Ecology 85: 2046–2052.

    Google Scholar 

  • Rosindell, J., and A.B.. Phillimore. 2011. A unified model of island biogeography sheds light on the zone of radiation. Ecology Letters 14: 552–560.

  • Shiah, F.K., and H.W. Ducklow. 1995. Multiscale variability in bacterioplankton abundance, production, and specific growth rate in a temperate salt-marsh tidal creek. Limnology and Oceanography 40: 55–66.

    CAS  Google Scholar 

  • Shumway, S.W., and M.D. Bertness. 1992. Salt stress limitation of seedling recruitment in a salt marsh plant community. Oecologia 92: 490–497.

    Google Scholar 

  • Shumway, S.W., and M.D. Bertness. 1994. Patch size effects on marsh plant secondary succession mechanisms. Ecology 75: 564–568.

    Google Scholar 

  • Silliman, B.R., J. van de Koppel, M.D. Bertness, L.E. Stanton, and I.A. Mendelssohn. 2005. Drought, snails, and large-scale die-off of Southern U.S. salt marshes. Science 310: 1803–1806.

    CAS  Google Scholar 

  • Silliman, B.R., M.W. McCoy, C. Angelini, R.D. Holt, J.N. Griffin, and J. van de Koppel. 2013. Consumer fronts, global change, and runaway collapse in ecosystems. Annual Review of Ecology, Evolution, and Systematics 44: 503–538.

    Google Scholar 

  • Simberloff, D.S., and E.O. Wilson. 1969. Experimental zoogeography of islands: the colonization of empty islands. Ecology 50: 278–296.

    Google Scholar 

  • Snow, A.A., and S.W. Vince. 1984. Plant zonation in an Alaskan salt marsh: II. An experimental study of the role of edaphic conditions. Journal of Ecology 72: 669–684.

    Google Scholar 

  • Sullivan, M.J., and C.A. Moncreiff. 1990. Edaphic algae are an important component of salt marsh food-webs: evidence from multiple stable isotope analyses. Marine Ecology Progress Series 62: 149–159.

    Google Scholar 

  • Talley, T.S., J.A. Crooks, and L.A. Levin. 2001. Habitat utilization and alteration by the invasive burrowing isopod, Sphaeroma quoyanum, in California salt marshes. Marine Biology 138: 561–573.

    Google Scholar 

  • Teal, J.M., and B.L. Howes. 2002. Salt marsh values: retrospection from the end of the century. In Concepts and controversies in tidal marsh ecology, ed. M.P. Weinstein and D.A. Kreeger, 9–19. New York: Kluwer Academic Publishers.

    Google Scholar 

  • Townend, I., C. Fletcher, M. Knappen, and K. Rossington. 2011. A review of salt marsh dynamics. Water and Environment Journal 25: 477–488.

    Google Scholar 

  • Umbanhowar, J., and K. McCann. 2005. Simple rules for the coexistence and competitive dominance of plants mediated by mycorrhizal fungi. Ecology Letters 8: 247–252.

    Google Scholar 

  • Valiela, I. 2006. Global coastal change. Malden: Blackwell Publishing.

    Google Scholar 

  • Valiela, I., M.L. Cole, J. Mcclelland, J. Hauxwell, J. Cebrian, and S.B. Joye. 2002. Role of salt marshes as part of coastal landscapes. In Concepts and controversies in tidal marsh ecology, ed. M.P. Weinstein and D.A. Kreeger, 23–36. New York: Kluwer Academic Publishers.

    Google Scholar 

  • Wang, J.Q., X.D. Zhang, L.F. Jiang, M.D. Bertness, C.M. Fang, J.K. Chen, T. Hara, and B. Li. 2010. Bioturbation of burrowing crabs promotes sediment turnover and carbon and nitrogen movements in an estuarine salt marsh. Ecosystems 13: 586–599.

    CAS  Google Scholar 

  • Widdows, J., and M. Brinsley. 2002. Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone. Journal of Sea Research 48: 143–156.

    Google Scholar 

  • Widdows, J., S. Brown, M.D. Brinsley, P.N. Salkeld, and M. Elliott. 2000. Temporal changes in intertidal sediment erodability: influence of biological and climatic factors. Continental Shelf Research 20: 1275–1289.

    Google Scholar 

  • Wilson, C.A., Z.J. Hughes, and D.M. FitzGerald. 2012. The effects of crab bioturbation on Mid-Atlantic saltmarsh tidal creek extension: Geotechnical and geochemical changes. Estuarine, Coastal and Shelf Science 106: 33–44.

    CAS  Google Scholar 

  • Xin, P., G. Jin, L. Li, and D.A. Barry. 2009. Effects of crab burrows on pore water flows in salt marshes. Advances in Water Resources 32: 439–449.

    Google Scholar 

  • Zhang, X., X. Jia, Y. Chen, J. Shao, X. Wu, L. Shang, and B. Li. 2013. Crabs mediate interactions between native and invasive salt marsh plants: a mesocosm study. PloS One 8: e74095.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank P. Martinetto and two anonymous reviewers for greatly improving earlier versions of this manuscript. Results discussed were obtained through a continuous funding from Fundación Antorchas, UNMdP, CONICET, and ANPCyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Alberti.

Additional information

Communicated by Wayne S. Gardner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alberti, J., Daleo, P., Fanjul, E. et al. Can a Single Species Challenge Paradigms of Salt Marsh Functioning?. Estuaries and Coasts 38, 1178–1188 (2015). https://doi.org/10.1007/s12237-014-9836-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9836-z

Keywords

Navigation