Skip to main content
Log in

Predictable Habitat Associations of Four Crab Species Across the Low Intertidal Landscape of a Tropical Estuary over Time

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

To address the increasing threats from urbanization and climate change, an improved understanding of ecosystem processes at large, estuary-wide scales is required. Intertidal crabs contribute to estuarine functioning via trophic interactions and ecosystem engineering. Previous studies on crab spatial distribution patterns have focused on site- or transect-specific scales and consequently do not address spatial distribution patterns relative to the full environmental landscape within estuaries. In the present study, predictive habitat modeling using data collected with high replication photographic sampling revealed distinct habitat associations for four crab species across the low intertidal landscape (between mean low tide at spring and the edge of the mangrove forest) of Stuart Creek, northeast Australia (19° 17′ S, 146° 50′ E). Seasonal sampling was conducted on 10 dates from April 2009 to July 2011. Uca coarctata occurred nearly everywhere but achieved highest abundance on intertidal banks with pneumatophores and at least some canopy overhang. Uca seismella occurred in habitats with low intertidal vegetation and almost no structural complexity. By contrast, Metopograpsus frontalis was associated with habitats with at least 4 % of the substratum containing structure, and Metopograpsus latifrons with habitats with at least 22 % of the substratum containing structure. While overlap occurred between species, a taxon-specific separation of Metopograpsus spp.-dominated habitats and Uca spp.-dominated habitats was related to the availability of structural complexity, suggesting that it is a niche-defining factor. Sensitivity tests indicated high predictability of habitat associations among pre-dry, dry, pre-wet, and wet seasons from April 2009 to July 2011, suggesting high stability in spatial distribution patterns of intertidal crabs. Results provide a scientific basis for increased understanding of the spatial distribution patterns of intertidal crabs at landscape scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alongi, D.M. 2002. Present state and future of the world's mangrove forests. Environmental Conservation 29: 331–349.

    Article  Google Scholar 

  • Alongi, D.M. 2008. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science 76: 1–13.

    Article  Google Scholar 

  • Arruda-Bezerra, L.E., and H. Matthews-Cascon. 2006. Population structure of the fiddler crab Uca leptodactyla Rathbun, 1898 (Brachyura: Ocypodidae) in a tropical mangrove of Northeast Brazil. Thalassas 22: 65–74.

    Google Scholar 

  • Arruda-Bezerra, L.E., C.B. Dias, G.X. Santana, and H. Matthews-Cascon. 2006. Spatial distribution of fiddler crabs (genus Uca) in a tropical mangrove of northeast Brazil. Scientia Marina 70: 759–766.

    Article  Google Scholar 

  • Blakeway, D.R., C.D. Robles, D.A. Fuentes, and H. Qiu. 2004. Spatially extensive, high resolution images of rocky shore communities. In Handbook of scaling methods in aquatic ecology, ed. L. Seuront, and P.G. Strutton, 109–124. CRC.

  • Bosire, J.O., J.G. Kairo, J. Kazungu, N. Koedam, and F. Dahdouh-Guebas. 2005. Predation on propagules regulates regeneration in a high-density reforested mangrove plantation. Marine Ecology Progress Series 299: 149–155.

    Article  Google Scholar 

  • Botto, F., and O. Iribarne. 2000. Contrasting effects of two burrowing crabs (Chasmagnathus granulata and Uca uruguayensis) on sediment composition and transport in estuarine environments. Estuarine and Coastal Shelf Science 51: 141–151.

    Article  CAS  Google Scholar 

  • Botto, F., G. Palomo, O. Iribarne, and M. Martinez. 2000. The effect of southwestern Atlantic burrowing crabs on habitat use and foraging activity of migratory shorebirds. Estuaries 23: 208–215.

    Article  Google Scholar 

  • Bouillon, S., N. Koedam, A.V. Raman, and F. Dehairs. 2002. Primary producers sustaining macro-invertebrate communities in intertidal mangrove forests. Oecologia 130: 441–448.

    Article  Google Scholar 

  • Bureau of Meteorology Australian Government. Climate data online. http://www.bom.gov.au/climate/data. Accessed 1 September 2012.

  • Cannicci, S., S. Fratini, and M. Vannini. 1999. Use of time, space and food resources in the mangrove climbing crab Selatium elongatum (Grapsidae, Sesarmidae). Marine Biology 135: 335–339.

    Article  Google Scholar 

  • Cannicci, S., S. Ritossa, R.K. Ruwa, and M. Vannini. 1996a. Tree fidelity and hole fidelity in the tree crab Sesarma leptosoma (Decapoda, Grapsidae). Journal of Experimental Marine Biology and Ecology 196: 299–311.

    Article  Google Scholar 

  • Cannicci, S., F. Dahdouh-Guebas, D. Anyona, and M. Vannini. 1996b. Natural diet and feeding habits of Thalamita crenata (Decapoda: Portunidae). Journal of Crustacean Biology 16: 678–683.

    Article  Google Scholar 

  • Colby, D.R., and M.S. Fonseca. 1984. Population dynamics, spatial dispersion and somatic growth of the sand fiddler crab Uca pugilator. Marine Ecology Progress Series 16: 269–279.

    Article  Google Scholar 

  • Costanza, R., R. d'Arge, R. de Groot, S. Farberk, M. Grazzo, B. Hannon, K. Limburg, S. Naeem, R.V. O'Neill, J. Paruelo, R.G. Raskin, P. Sutton, and M. van den Belt. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.

    Article  CAS  Google Scholar 

  • Dahdouh-Guebas, F., M. Verneirt, S. Cannicci, J.G. Kairo, J.F. Tack, and N. Koedam. 2002. An exploratory study on grapsid crab zonation in Kenyan mangroves. Wetlands Ecology and Management 10: 179–187.

    Article  Google Scholar 

  • De'ath, G., and K.E. Fabricius. 2000. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 81: 3178–3192.

    Article  Google Scholar 

  • Duke, N.C., J.O. Meynecke, S. Dittmann, A.M. Ellison, K. Anger, U. Berger, S. Cannicci, K. Diele, K.C. Ewel, C.D. Field, N. Koedam, S.Y. Lee, C. Marchand, I. Nordhaus, and F. Dahdouh-Guebas. 2007. A world without mangroves. Science 317: 41–42.

    Article  CAS  Google Scholar 

  • Dye, A.H., and T.A. Lasiak. 1986. Microbenthos, meiobenthos and fiddler crabs: Trophic interactions in a tropical mangrove sediment. Marine Ecology Progress Series 32: 259–264.

    Article  Google Scholar 

  • Escarpa, M., O. Iribarne, and D. Navarro. 2004. Effects of the intertidal burrowing crab Chasmagnathus granulatus on infuanal zonation patterns, tidal behavior, and risk of mortality. Estuaries 27: 120–131.

    Article  Google Scholar 

  • Eshky, A.A., R.J.A. Atkinson, and A.C. Taylor. 1995. Physiological ecology of crabs from Saudi Arabian mangrove. Marine Ecology Progress Series 126: 83–95.

    Article  Google Scholar 

  • Fensham, R.J., and R.J. Fairfax. 2002. Aerial photography for assessing vegetation change: A review of applications and the relevance of findings for Australian vegetation history. Australian Journal of Botany 50: 415–429.

    Article  Google Scholar 

  • Fielding, A.H., and J.F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 38–49.

    Article  Google Scholar 

  • Gherardi, F., and S. Russo. 2001. Burrowing activity in the sand-bubbler crab, Dotilla fenestrata (Crustacea, Ocypodidae), inhabiting a mangrove swamp in Kenya. Journal of Zoology 253: 211–223.

    Article  Google Scholar 

  • Gilbert, B., S. Srivastava, and K.R. Kirby. 2008. Niche partitioning at multiple scales facilitates coexistence among mosquito larvae. Oikos 117: 944–950.

    Article  Google Scholar 

  • Guisan, A., and N.E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147–186.

    Article  Google Scholar 

  • Hartnoll, R.G., S. Cannici, W.D. Emmerson, S. Fratini, A. Macia, Y. Mgaya, F. Porri, R.K. Ruwa, J.P. Shunula, and M.W. Skov. 2002. Geographic trends in mangrove crab abundance in East Africa. Wetlands Ecology and Management 10: 203–213.

    Article  Google Scholar 

  • Hawkins, A.J.S., and M.B. Jones. 1982. Gill area and ventilation in two mud crabs, Helice crassa Dana (Grapsidae) and Macrophthalmus hirtipes Jacquinot (Ocypodidae), in relation to habitat. Journal of Experimental Marine Biology and Ecology 60: 103–118.

    Article  Google Scholar 

  • Hemmi, J.M., J. Marshall, W. Pix, M. Vorobyev, and J. Zeil. 2006. The variable colours of the fiddler crab Uca vomeris and their relation to background and predation. Journal of Experimental Biology 409: 4140–4153.

    Article  Google Scholar 

  • How, M.J., J.M. Hemmi, J. Zeil, and R. Peters. 2008. Claw waving display changes with receiver distance in fiddler crabs, Uca perplexa. Animal Behavior 75: 1015–1022.

    Article  Google Scholar 

  • Jaroensutasinee, M., and K. Jaroensutasinee. 2004. Morphology, density, and sex ration of fiddler crabs from southern Thailand (Decapoda, Brachyura, Ocypodidae). Crustaceana 77: 533–551.

    Article  Google Scholar 

  • Jones, M.B., and J.G. Greenwood. 1982. Water loss of a porcelain crab Petrolisthes elongatus (Mile Edwards, 1837) (Decapoda, Anomura) during atmospheric exposure. Comparative Biochemistry and Physiology. Part A, Physiology 72: 631–636.

    Article  Google Scholar 

  • Koch, V., and M. Wolff. 2002. Energy budget and ecological role of mangrove epibenthos in the Caeté estuary, North Brazil. Marine Ecology Progress Series 228: 119–130.

    Article  Google Scholar 

  • Koch, V., M. Wolff, and K. Diele. 2005. Comparative population dynamics of four fiddler crabs (Ocypodidae, genus Uca) from a north Brazilian mangrove ecosystem. Marine Ecology Progress Series 291: 177–188.

    Article  Google Scholar 

  • Kristensen, E. 2008. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. Journal of Sea Research 59: 30–43.

    Article  Google Scholar 

  • Kyomo, J. 1986. Reproductive activities in the sesarmid crab Sesarma intermedia in the coastal and estuarine habitats of Hakata, Japan. Marine Biology 91: 319–329.

    Article  Google Scholar 

  • Lee, S.Y. 1998. Ecological role of grapsid crabs in mangrove ecosystems: A review. Marine and Freshwater Research 49: 335–343.

    Article  Google Scholar 

  • Lee, S.Y. 2008. Mangrove macrobenthos: assemblages, services, and linkages. Journal of Sea Research 59: 16–29.

    Article  Google Scholar 

  • Lovelock, C.E., and J. Ellison. 2007. Vulnerability of mangroves and tidal wetlands of the Great Barrier Reef to climate change. In Climate change and the Great Barrier Reef: A vulnerability assessment, ed. J.E. Johnson and P.A. Marshall. Australia: Great Barrier Reef Marine Park Authority and Australian Greenhouse Office.

    Google Scholar 

  • Meziane, T., M.C. Sanabe, and M. Tsuchiya. 2002. Role of fiddler crabs of a subtropical intertidal flat on the fate of sedimentary fatty acids. Journal of Experimental Marine Biology and Ecology 270: 191–201.

    Article  CAS  Google Scholar 

  • Micheli, F., F. Gherardi, and M. Vannini. 1991. Feeding and burrowing ecology of two East African mangrove crabs. Marine Biology 111: 247–254.

    Article  Google Scholar 

  • Ness, E.G. 1972. A survey of the Anomura and Brachyura of the Ross River estuary. Townsville: Dissertation, James Cook University.

    Google Scholar 

  • Nobbs, M. 2003. Effects of vegetation differ among three species of fiddler crabs (Uca spp.). Journal of Experimental Marine Biology and Ecology 284: 41–50.

    Article  Google Scholar 

  • Otani, S., Y. Kozuki, R. Yamanaka, H. Sasaoka, T. Ishiyama, Y. Yokitsu, H. Sakai, and Y. Fujiki. 2010. The role of crabs (Macrophthalmus japonicus) burrows on organic carbon cycle in estuarine tidal flat, Japan. Estuarine, Coastal and Shelf Science 86: 434–440.

    Article  CAS  Google Scholar 

  • Poon, D.Y.N., B.K.K. Chan, and G.A. Williams. 2010. Spatial and temporal variation in diets of the crabs Metopograpsus frontalis (Grapsidae) and Perisesarma bidens (Sesarmidae): Implications for mangrove food webs. Hydrobiologia 638: 29–40.

    Article  Google Scholar 

  • Potts, M.D., S.J. Davies, W.H. Bossert, S. Tan, and M.N. Supardi. 2004. Habitat heterogeneity and niche structure of trees in two tropical rain forests. Oecologia 139: 446–453.

    Article  Google Scholar 

  • Rabalais, N.N., and J.N. Cameron. 1985. Physiological and morphological adaptations of adult Uca subcylindrica to semi-arid environments. Biological Bulletin 168: 135–146.

    Article  Google Scholar 

  • Ravichandran, S., S. Anthonisamy, T. Kuannupandi, and T. Balasubramanian. 2007. Habitat preference of crabs in Pichavaram mangrove environment, Southeast Coast of India. Journal of Fisheries and Aquatic Sciences 2: 47–55.

    Article  Google Scholar 

  • Ronnback, P. 1999. The ecological basis for economic value of seafood production supported by mangrove ecosystems. Ecological Economics 29: 235–252.

    Article  Google Scholar 

  • Sasekumar, A. 1974. Distribution of macrofauna on a Malayan mangrove shore. Journal of Animal Ecology 43: 51–69.

    Article  Google Scholar 

  • Seto, K.C. 2011. Exploring the dynamics of migration to mega-delta cities in Asia and Africa: Contemporary drivers and future scenario. Global Environmental Change 21S: 94–107.

    Article  Google Scholar 

  • Shaw, M., and I.R. Tibbetts. 2004. Grazing by Metopograpsus frontalis (Decapoda: Grapsidae) on intertidal rock walls of Moreton Bay. Proceedings of the Royal Society of Queensland 111: 95–101.

    Google Scholar 

  • Sheaves, M., and B. Molony. 2000. Short-circuit in the mangrove food chain. Marine Ecology Progress Series 199: 97–109.

    Article  Google Scholar 

  • Sivasothi, N. 2000. Niche preferences of tree-climbing crabs in Singapore mangroves. Crustaceana 73: 25–38.

    Article  Google Scholar 

  • Skov, M., M. Vannini, J. Shunula, R. Hartnoll, and S. Cannicci. 2002. Quantifying the density of mangrove crabs: Ocypodidae and Grapsidae. Marine Biology 141: 725–732.

    Article  Google Scholar 

  • Snelling, B. 1958. The distribution of intertidal crabs in the Brisbane River. Austalian Journal of Marine and Freshwater Research 10: 67–83.

    Article  Google Scholar 

  • Solan, M., J.D. Germano, D.C. Rhoads, C. Smith, E. Michaud, D. Parry, R. Wenzhofer, B. Kennedy, C. Henriques, E. Battle, D. Carey, L. Iocco, R. Valente, J. Watson, and R. Rosenberg. 2003. Towards a greater understanding of pattern, scale and process in marine benthic systems: A picture is worth a thousand worms. Journal of Experimental Marine Biology and Ecology 285: 313–338.

    Article  Google Scholar 

  • Takeda, S. 2010. Habitat partitioning between prey soldier crab Mictyris brevidactylus and predator fiddler crabs Uca perplexa. Journal of Experimental Marine Biology and Ecology 390: 160–168.

    Article  Google Scholar 

  • Valiela, I., J.L. Bowen, and J.K. York. 2001. Mangrove forests: One of the world's threatened major tropical environments. Bioscience 51: 807–815.

    Article  Google Scholar 

  • Vergamini, F.G., and F.L. Mantelatto. 2008. Microdistribution of juveniles and adults of the mud crab Panopeus americanus (Brachyura, Panopeidae) in a remnant mangrove area in the southwest Atlantic. Journal of Natural History 42: 1581–1589.

    Article  Google Scholar 

  • Vermeiren, P., and M. Sheaves. 2014. A remote photographic technique for high replication, large scale understanding of spatial distribution patterns of intertidal crabs. Hydrobiologia 724: 79–89.

    Article  Google Scholar 

  • Weis, J.S., and P. Weis. 2004. Behaviour of four species of fiddler crabs, genus Uca, in Southeast Sulawesi, Indonesia. Hydrobiologia 523: 47–58.

    Article  Google Scholar 

  • Wentworth, C.K. 1922. A scale of grade and class terms for clastic sediments. Journal of Geology 30: 377–392.

    Article  Google Scholar 

  • Werry, J., and S.Y. Lee. 2005. Graspid crabs mediate link between mangrove litter production and estuarine planktonic food chains. Marine Ecology Progress Series 293: 165–176.

    Article  Google Scholar 

  • Wintle, B.A., J. Elith, and J.M. Potts. 2005. Fauna habitat modelling and mapping: A review and case study in the Lower Hunter Central Coast region of NSW. Australian Ecology 30: 719–738.

    Article  Google Scholar 

  • Wolff, M., V. Koch, and V. Isaac. 2000. A trophic flow model of the Caeté mangrove estuary (North Brazil) with considerations for the sustainable use of its resources. Estuarine, Coastal and Shelf Science 50: 786–803.

    Article  Google Scholar 

  • Zeil, J., and J.M. Hemmi. 2006. The visual ecology of fiddler crabs. Journal of Comparative Physiology 192: 1–25.

    Article  Google Scholar 

Download references

Acknowledgments

The authors like to acknowledge Ross Johnston for providing comments on an early draft and the members of the Estuary and Tidal Wetlands Ecosystems Research Group, students from James Cook University, and personal friends for their assistance in the collection of data in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vermeiren.

Additional information

Communicated by Judy Grassle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vermeiren, P., Sheaves, M. Predictable Habitat Associations of Four Crab Species Across the Low Intertidal Landscape of a Tropical Estuary over Time. Estuaries and Coasts 38, 285–295 (2015). https://doi.org/10.1007/s12237-014-9799-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9799-0

Keywords

Navigation