Skip to main content

Advertisement

Log in

Impacts of Sea Level Rise on Marsh as Fish Habitat

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Sea level rise and accompanying coastal squeeze will drive changes in marsh spatial configuration and connectivity affecting how fishes utilize the marsh. We investigate how sea level rise and coastal squeeze affect the spatial distribution, configuration, and connectivity within tidal marshes in a landscape context. Using spatial analyses, we compare two outputs from a process model: one with constant vertical accretion and the other with a more optimistic prediction that rates of vertical accretion will equal rates of sea level rise. We use landscape metrics on the model outputs to evaluate the landscape scale changes that occur in a selected marsh at the National Estuarine Research Reserve (NERR) site in Wells, Maine, USA. We found that moderate sea level rise would benefit marshes by expanding their area and maintaining habitat spatial complexity. However, rapid sea level coupled with stressors like coastal squeeze is likely to result in smaller and more dispersed marshes with simpler patch edges and less connected patches. Such features indicate lesser potential for food and refugia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Able, K.W., V.N. Deborah, G. Petruzzelli, and S.M. Hagan. 2012. Connectivity among salt marsh subhabitats: residency and movements of the mummichog (Fundulus heteroclitus). Estuaries and Coasts 35: 743–753.

    Google Scholar 

  • Beger, M., H.S. Grantham, R.L. Pressey, Kerrie A. Wilson, E.L. Peterson, D. Dorfman, P.J. Mumby, R. Lourival, D.R. Brumbaugh, and H.P. Possingham. 2010a. Conservation planning for connectivity across marine, freshwater, and terrestrial realms. Biological Conservation 143: 565–575.

    Article  Google Scholar 

  • Beger, M., S. Linke, M. Watts, E. Game, E. Treml, I. Ball, and H.P. Possingham. 2010b. Incorporating asymmetric connectivity into spatial decision making for conservation. Conservation Letters 3: 359–368.

    Article  Google Scholar 

  • Beier, P., W. Spencer, R.F. Baldwin, and B.H. McRae. 2011. Toward best practices for developing regional connectivity maps. Conservation Biology 25: 879–892.

    Article  Google Scholar 

  • Berkström, C., M. Gullström, R. Lindborg, A.W. Mwandya, A.S. Saleh, N.K. Yahya, and M. Nyström. 2012. Exploring ‘knowns’ and ‘unknowns’ in tropical seascape connectivity with insights from East African coral reefs. Estuarine, Coastal and Shelf Science 107: 1–21.

    Article  Google Scholar 

  • Bezdek, J.C. 1981. Pattern recognition with fuzzy objective function algorithms. New York: Kluwer Academic.

    Book  Google Scholar 

  • Bindoff, N.L., J. Willebrand, V. Artale, A. Cazenave, J.M. Gregory, S. Gulev, K. Hanawa, C. Le Quéré, S. Levitus, C.K. Yukihiro Nojiri, C.K. Shum, L.D. Talley, S. Alakkat, and Unnikrishnan. 2007. In Observations: oceanic climate change and sea level. In Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bittermann, K., S. Rahmstorf, M. Perrette, and M. Vermeer. 2013. Predictability of twentieth century sea-level rise from past data. Environmental Research Letters 8: 014013.

    Article  Google Scholar 

  • Bodansky E., A, Gribov, and M. Pilouk. 2002. Smoothing and compression of lines obtained by raster-to-vector conversion. In Graphics recognition algorithms and applications, ed. D. Blostein and Y.-B. Kwon, 256–265: Springer: Berlin.

  • Boesch, D.F., and E.R. Turner. 1984. Dependence of fishery species on salt marshes: the role of food and refuge. Estuaries and Coasts 7: 460–468.

    Article  Google Scholar 

  • Brittain, R., and C. Craft. 2012. Effects of sea-level rise and anthropogenic development on priority bird species habitats in coastal Georgia, USA. Environmental Management 49: 473–482.

    Article  Google Scholar 

  • Brost, B.M., and P. Beier. 2011. Use of land facets to design linkages for climate change. Ecological Applications 22: 87–103.

    Article  Google Scholar 

  • Carroll, C., B.H. McRae, and A. Brookes. 2012. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in Western North America. Conservation Biology 26: 78–87.

    Article  Google Scholar 

  • Cazenave, A., and W. Llovel. 2009. Contemporary sea level rise. Annual Review of Marine Science 2: 145–173.

    Article  Google Scholar 

  • Chmura, G., and G. Hung. 2004. Controls on salt marsh accretion: a test in salt marshes of Eastern Canada. Estuaries and Coasts 27: 70–81.

    Article  Google Scholar 

  • Cifaldi, R.L., A.J. David, J.D. Duh, and D.G. Brown. 2004. Spatial patterns in land cover of exurbanizing watersheds in southeastern Michigan. Landscape and Urban Planning 66: 107–123.

    Article  Google Scholar 

  • Clark, J.D., J.E. Dunn, and K.G. Smith. 1993. A multivariate model of female black bear habitat use for a geographic information system. Journal of Wildlife Management 57: 519–526.

    Article  Google Scholar 

  • Coleman, J.M., O.K. Huh, and DeWitt Braud Jr. 2008. Wetland loss in world deltas. Journal of Coastal Research 24: 1–14.

    Article  Google Scholar 

  • Corman, S.S., and C.T. Roman. 2011. Comparison of salt marsh creeks and ditches as habitat for nekton. Marine Ecology Progress Series 434: 57–66.

    Article  Google Scholar 

  • Cowling, R.M., A.T. Knight, S.D.J. Privett, and G. Sharma. 2010. Invest in opportunity, not inventory of hotspots. Conservation Biology 24: 633–635.

    Article  Google Scholar 

  • Craft, C., J. Clough, J. Ehman, S. Joye, R. Park, S. Pennings, H. Guo, and Megan Machmuller. 2008. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment 7: 73–78.

    Article  Google Scholar 

  • Craig, K.J., and L.B. Crowder. 2002. Factors influencing habitat selection in fishes with a review of marsh ecosystems. In Concepts and Controversies in tidal marsh ecology, eds. M.P. Weinstein and D.A. Kreeger, 241–266. Netherlands: Springer.

  • Deegan, L.A., J.E. Hughes, and R.A. Rountree. 2002. Salt marsh ecosystem support of marine transient species. In In Concepts and controversies in tidal marsh ecology, ed. M.P. Weinstein and D.A. Kreeger, 333–365. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Deegan, L.A., D.S. Johnson, S.R. Warren, B.J. Peterson, J.W. Fleeger, S. Fagherazzi, and W.M. Wollheim. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490: 388–392.

    Article  CAS  Google Scholar 

  • Dibble, K.L., and L.A. Meyerson. 2012. Tidal flushing restores the physiological condition of fish residing in degraded salt marshes. PLoS ONE 7: e46161.

    Article  CAS  Google Scholar 

  • E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, and A. Weingessel. 2009. e1071: misc functions of the Department of Statistics (e1071). In R package version 1.5-19: TU Wien.

  • Dionne, Michele, and James Dochtermann. 2006. Fish. In Site profile of the Wells National Estuarine Research Reserve, ed. M. Dionne, C. Dalton, and H. Wilhelm, 149–174. Wells: Wells National Estuarine Research Reserve.

    Google Scholar 

  • Dionne M. , M. Haas, and A. Leonard. 2006. Developing an index of tidal wetland health in the Gulf of Maine using fish as indicators. In Report to USEPA Office of Ecosystem Protection Small Grantees Program, 25. Boston, MA.

  • Dionne, M., F.T. Short, and D.M. Burdick. 1999. Fish utilization of restored, created, and reference salt-marsh habitat in the Gulf of Maine. American Fisheries Society Symposium 22: 384–404.

    Google Scholar 

  • Doncaster, P.C. 2001. Healthy wrinkles for population dynamics: unevenly spread resources can support more users. Journal of Animal Ecology 70: 91–100.

    Article  Google Scholar 

  • Doody, P.J. 2004. ‘Coastal squeeze’: an historical perspective. Journal of Coastal Conservation 10: 129–138.

    Article  Google Scholar 

  • Dunning, J.B., B.J. Danielson, and R.H. Pulliam. 1992. Ecological processes that affect populations in complex landscapes. Oikos 65: 169–175.

    Article  Google Scholar 

  • Eberhardt, A.L., D.M. Burdick, and M. Dionne. 2011. The effects of road culverts on nekton in New England salt marshes: implications for tidal restoration. Restoration Ecology 19: 776–785.

    Article  Google Scholar 

  • Fahrig, L., J.H. Pedlar, S.E. Pope, P.D. Taylor, and J.F. Wegner. 1995. Effect of road traffic on amphibian density. Biological Conservation 73: 177–182.

    Article  Google Scholar 

  • Fairbanks, D.H.K., and G.A. Benn. 2000. Identifying regional landscapes for conservation planning: a case study from KwaZulu-Natal, South Africa. Landscape and Urban Planning 50: 237–257.

    Article  Google Scholar 

  • Feagin, R.A., L.M. Martinez, G. Mendoza-Gonzalez, and R. Costanza. 2010. Salt marsh zonal migration and ecosystem service change in response to global sea level rise: a case study from an urban region. Ecology and Society 15(4): 14.

    Google Scholar 

  • Fisher, J.T., B. Anholt, and J.P. Volpe. 2011. Body mass explains characteristic scales of habitat selection in terrestrial mammals. Ecology and Evolution 1: 517–528.

    Article  Google Scholar 

  • Forman, R.T. 1995. Some general principles of landscape and regional ecology. Landscape Ecology 10: 133–142.

    Article  Google Scholar 

  • Foster, G.L., and E.J. Rohling. 2013. Relationship between sea level and climate forcing by CO2 on geological timescales. Proceedings of the National Academy of Sciences 110: 1209–1214.

    Article  CAS  Google Scholar 

  • Gasson, E., M. Siddall, D.J. Lunt, O.J.L. Rackham, C.H. Lear, and D. Pollard. 2012. Exploring uncertainties in the relationship between temperature, ice volume, and sea level over the past 50 million years. Reviews of Geophysics 50, RG1005.

    Article  Google Scholar 

  • Geraldi, N.R., and P.I. Macreadie. 2013. Restricting prey dispersal can overestimate the importance of predation in trophic cascades. PLoS ONE 8: e55100.

    Article  CAS  Google Scholar 

  • Gosselink, J.G. 1984. The ecology of delta marshes of coastal Louisiana: a community profile. Washington: United States Fish and Wildlife. FWS/OBS-84/09.

  • Greenberg, R., J.E. Maldonado, S. Droege, and M.V. McDonald. 2006. Tidal marshes: a global perspective on the evolution and conservation of their terrestrial vertebrates. BioScience 56: 675–685.

    Google Scholar 

  • Halpin, P.M. 2000. Habitat use by an intertidal salt-marsh fish: trade-offs between predation and growth. Marine Ecology Progress Series 198: 203–214.

    Article  Google Scholar 

  • Hansen, L.P., and T.P. Quinn. 1998. The marine phase of the Atlantic salmon (Salmo salar) life cycle, with comparisons to Pacific salmon. Canadian Journal of Fisheries and Aquatic Sciences 55: 104–118.

    Google Scholar 

  • Herke, W.H., E.E. Knudsen, P.A. Knudsen, and B.D. Rogers. 1992. Effects of semi-impoundment of Louisiana marsh on fish and crustacean nursery use and export. North American Journal of Fisheries Management 12: 151–160.

    Article  Google Scholar 

  • Holling, C.S. 1992. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs 62: 447–502.

    Article  Google Scholar 

  • Irlandi, E.A., and M.K. Crawford. 1997. Habitat linkages: the effect of intertidal saltmarshes and adjacent subtidal habitats on abundance, movement, and growth of an estuarine fish. Oecologia 110: 222–230.

    Article  Google Scholar 

  • J. Jenness, B. Brost, and P. Beier. 2011. Land Facet Corridor Designer: extension for ArcGIS. Available at: http://www.jennessent.com/arcgis/land_facets.htm Jenness Enterprises.

  • Kent, C., and J. Wong. 1982. An index of littoral zone complexity and its measurement. Canadian Journal of Fisheries and Aquatic Sciences 39: 847–853.

    Article  Google Scholar 

  • Kim, M., and M. Lapointe. 2011. Regional variability in Atlantic salmon (Salmo salar) riverscapes: a simple landscape ecology model explaining the large variability in size of salmon runs across Gaspé watersheds, Canada. Ecology of Freshwater Fish 20: 144–156.

    Google Scholar 

  • Kirwan, M.L., and S.M. Mudd. 2012. Response of salt-marsh carbon accumulation to climate change. Nature 489: 550–553.

    Article  CAS  Google Scholar 

  • Kneib, R.T. 1984. Patterns in the utilization of the intertidal salt marsh by larvae and juveniles of Fundulus heteroclitus (Linnaeus) and Fundulus luciae (Baird). Journal of Experimental Marine Biology and Ecology 83: 41–51.

  • Kneib, R.T. 1987. Predation risk and use of intertidal habitats by young fishes and shrimp. Ecology 68: 379–386.

    Article  Google Scholar 

  • Kneib, R.T., and S.L. Wagner. 1994. Nekton use of vegetated marsh habitats at different stages of tidal inundation. Marine Ecology Progress Series 106: 227–238.

    Article  Google Scholar 

  • Kocik, J.F., and P.C. Ferreri. 1998. Juvenile production variation in salmonids: population dynamics, habitat, and the role of spatial relationships. Canadian Journal of Fisheries and Aquatic Science 55(S1): 191–200.

    Article  Google Scholar 

  • Lindenmayer, D., R.J. Hobbs, R. Montague-Drake, J. Alexandra, A. Bennett, M. Burgman, Peter Cale, A. Calhoun, V. Cramer, P. Cullen, D. Driscoll, L. Fahrig, J. Fischer, J. Franklin, Y. Haila, M. Hunter, P. Gibbons, S. Lake, G. Luck, C. MacGregor, S. McIntyre, R.M. Nally, Adrian Manning, J. Miller, H. Mooney, R. Noss, H. Possingham, D. Saunders, F. Schmiegelow, M. Scott, D. Simberloff, T. Sisk, G. Tabor, B. Walker, J. Wiens, J. Woinarski, and E. Zavaleta. 2008. A checklist for ecological management of landscapes for conservation. Ecology Letters 11: 78–91.

    Google Scholar 

  • Lotrich, V.A. 1975. Summer home range and movements of Fundulus heteroclitus (Pisces: Cyprinodontidae) in a tidal creek. Ecology 56: 191–198.

    Google Scholar 

  • Lotze, H.K., H.S. Lenihan, B.J. Bourque, R.H. Bradbury, R.G. Cooke, M.C. Kay, S.M. Kidwell, M.X. Kirby, C.H. Peterson, and J.B.C. Jackson. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806–1809.

    Article  CAS  Google Scholar 

  • Macreadie, P.I., R.M. Connolly, M.J. Keough, G.P. Jenkins, and J.S. Hindell. 2010. Short-term differences in animal assemblages in patches formed by loss and growth of habitat. Austral Ecology 35: 515–521.

    Article  Google Scholar 

  • Macreadie, P.I., N.R. Geraldi, and C.H. Peterson. 2012. Preference for feeding at habitat edges declines among juvenile blue crabs as oyster reef patchiness increases and predation risk grows. Marine Ecology Progress Series 466: 145–153.

    Article  Google Scholar 

  • Maune, D., S.M. Kopp, C.A. Crawford, and C.E. Zervas. 2007. Introduction: the DEM users manual. In Digital elevation model technologies and applications: the DEM users manual, ed. D. Maune. Bethesda: American Society for Photogrammetry and Remote Sensing.

    Google Scholar 

  • K. McGarigal and B. J. Marks. 1995. FRAGSTATS: spatial analysis program for quantifying landscape structure. In USDA Forest Service General Technical Report PNW-GTR-351: United States Department of Agriculture.

  • McGrath, P.E. 2005. Site fidelity, home range, and daily movements of white perch, Morone americana, and striped bass, Morone saxatilis, in two small tributaries of the York River, Virginia. Williamsburg: The College of William and Mary.

  • McKenzie, N.L., L. Belbin, C.R. Margules, and G.J. Keighery. 1989. Selecting representative reserve systems in remote areas: a case study in the Nullarbor region, Australia. Biological Conservation 50: 239–261.

    Article  Google Scholar 

  • McRae, B.H., B.G. Dickson, T.H. Keitt, and V.B. Shah. 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89: 2712–2724.

    Article  Google Scholar 

  • Meehl G. A., T. F. Stocker, W. D. Collins, P. Friedlingstein, A. T. Gaye, J. M. Gregory, A. Kitoh, R. Knutti, J. M. Murphy, A. Noda, S.C.B. Raper, I.G. Watterson, A. J. Weaver, and Z.-C. Zhao. 2007. Global climate projections. In Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller. Cambridge: Intergovernmental Panel on Climate Change.

  • Millennium Ecosystem Assessment. 2005. Ecosystems and human well-being: synthesis. Washington: Island.

    Google Scholar 

  • Minello, Thomas, Roger Zimmerman, and Richard Medina. 1994. The importance of edge for natant macrofauna in a created salt marsh. Wetlands 14: 184–198.

    Article  Google Scholar 

  • Morris K . 2012. Wetland connectivity: understanding the dispersal of organisms that occur in Victoria's wetlands. Technical Report No. 225. Heidelberg, Victoria: Arthur Rylah Institute for Environmental Research, Department of Sustainability and Environment.

  • Nerem, S.R., D.P. Chambers, J.C. Choe, and G.T. Mitchum. 2010. Estimating mean sea level change from the TOPEX and Jason altimeter missions. Marine Geodesy 33: 435–446.

    Article  Google Scholar 

  • Nicholls, R.J., and A. Cazenave. 2010. Sea-level rise and its impact on coastal zones. Science 328: 1517–1520.

    Article  CAS  Google Scholar 

  • NOAA. 2010a. Coastal Lidar: National Oceanic and Atmospheric Administration. http://www.csc.noaa.gov/digitalcoast/data/coastallidar.

  • NOAA. 2010b. Lidar data collected in marshes: its error and application for sea level rise modeling: Coastal Services Center. National Oceanic and Atmospheric Administration.

  • O'Neill, R.V., R. Jeffrey, R.H. Krummel, G.S. Gardner, B. Jackson, D.L. DeAngelis, B.T. Milne, M.G. Turner, B. Zygmunt, S.W. Christensen, V.H. Dale, and R.L. Graham. 1988. Indices of landscape pattern. Landscape Ecology 1: 153–162.

    Article  Google Scholar 

  • O'Connell, J.L., and J.A. Nyman. 2010. Marsh terraces in coastal Louisiana increase marsh edge and densities of waterbirds. Wetlands 30: 125–135.

    Article  Google Scholar 

  • Pachauri ,R. K and A. Reisinger. 2008. Climate change 2007. Synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report. Switzerland: IPCC, Geneva (Switzerland); Intergovernmental Panel on Climate Change, Geneva (Switzerland).

  • Parris, James D. 1989. Fish communities of interacting shallow-water habitats in tropical oceanic regions. Marine Ecology Progress Series 58.

  • Peterson, Garry, and Eugene R. Turner. 1994. The value of salt marsh edge vs interior as a habitat for fish and decapod crustaceans in a Louisiana tidal marsh. Estuaries and Coasts 17: 235–262.

    Article  Google Scholar 

  • Pfeffer, T.W., J.T. Harper, and S. O'Neel. 2008. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321: 1340–1343.

    Article  CAS  Google Scholar 

  • Pittman S. J. and C. A. McAlpine. 2003. Movements of marine fish and decapod crustaceans: process, theory and application. In Advances in Marine Biology, 205–294: Academic Press.

  • R Development Core Team. 2010. R: a language and environment for statistical computing. Viena: R Foundation for Statistical Computing. Retrieved from: http://www.R-project.org.

  • Rogers K, N Saintilan and C Copeland. 2013. Managed retreat of saline coastal wetlands: challenges and opportunities identified from the Hunter River Estuary, Australia. Estuaries and Coasts: 1–12

  • Rountree, R.A., and K.W. Able. 2007. Spatial and temporal habitat use patterns for salt marsh nekton: implications for ecological functions. Aquatic Ecology 41: 25–45.

    Article  CAS  Google Scholar 

  • Rutledge, D.T. 2003. Landscape indices as measures of the effects of fragmentation: can pattern reflect process? In DOC Science Internal Series 98. Wellington: New Zealand Department of Conservation.

    Google Scholar 

  • Saintilan, N., K. Hossain, and D. Mazumder. 2007. Linkages between seagrass, mangrove and saltmarsh as fish habitat in the Botany Bay estuary, New South Wales. Wetlands Ecology and Management 15: 277–286.

    Article  Google Scholar 

  • Schleupner, C. 2008. Evaluation of coastal squeeze and its consequences for the Caribbean island Martinique. Ocean & Coastal Management 51: 383–390.

    Article  Google Scholar 

  • Schlosser, I.J. 1995. Critical landscape attributes that influence fish population dynamics in headwater streams. Hydrobiologia 303: 71–81.

    Article  Google Scholar 

  • Scruton, P.C. 1960. Delta building and deltaic sequence. In Recent sediments, northwest Gulf of Mexico, ed. F.P. Shepard, 82–102. Tulsa: American Association of Petroleum Geologists.

  • Sheaves, M. 2009. Consequences of ecological connectivity: the coastal ecosystem mosaic. Marine Ecology Progress Series 391: 107–115.

    Article  Google Scholar 

  • Šímová, P., and K. Gdulová. 2012. Landscape indices behavior: a review of scale effects. Applied Geography 34: 385–394.

    Article  Google Scholar 

  • Skov, M.W., S.j. Hawkins, M.Volkelt-Igoe, J. Pike, R.C. Thompson, and C. Patrick Doncaster. 2011. Patchiness in resource distribution mitigates habitat loss: insights from high-shore grazers. Ecosphere 2(5): 2150–8925.

  • Tischendorf, L., and L. Fahrig. 2000. On the usage and measurement of landscape connectivity. Oikos 90: 7–19.

    Article  Google Scholar 

  • Tomaselli, V., P. Tenerelli, and S. Sciandrello. 2012. Mapping and quantifying habitat fragmentation in small coastal areas: a case study of three protected wetlands in Apulia (Italy). Environmental monitoring and assessment 184: 693–713.

    Article  Google Scholar 

  • Torio, D.D., and G.L. Chmura. 2013. Assessing Coastal Squeeze of Tidal Wetlands. Journal of Coastal Research 29(5): 1049–1061.

    Google Scholar 

  • Traill, L.W., K. Perhans, C.E. Lovelock, A. Prohaska, S. McFallan, J.R. Rhodes, and K.A. Wilson. 2011. Managing for change: wetland transitions under sea-level rise and outcomes for threatened species. Diversity and Distributions 17: 1225–1233.

    Article  Google Scholar 

  • Turner, M.G. 1989. Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics 20: 171–197.

    Article  Google Scholar 

  • Valiela, I., J.L. Bowen, and J.K. York. 2001. Mangrove forests: one of the world's threatened major tropical environments. BioScience 51: 807–815.

    Article  Google Scholar 

  • Vermeer, M., and S. Rahmstorf. 2009. Global sea level linked to global temperature. Proceedings of the National Academy of Sciences 106: 21527–21532.

    Article  CAS  Google Scholar 

  • Vos, C.C., J. Verboom, P.F.M. Opdam, and C.J.F. Ter Braak. 2001. Toward ecologically scaled landscape indices. The American Naturalist 157: 24–41.

    Article  CAS  Google Scholar 

  • Wasson, K., A. Woolfolk, and C. Fresquez. 2013. Ecotones as indicators of changing environmental conditions: rapid migration of salt marsh–upland boundaries. Estuaries and Coasts 36: 654–664.

    Article  CAS  Google Scholar 

  • Waycott, M., C.M. Duarte, J.B. Tim, R.J. Carruthers, W.C. Orth, S.O. Dennison, A. Calladine, J.W. Fourqurean, K.L. Heck, A. Randall Hughes, G.A. Kendrick, W. Judson Kenworthy, F.T. Short, and S.L. Williams. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.0905620106.

    Google Scholar 

  • Worm, B., E.B. Barbier, N. Beaumont, E.J. Duffy, C. Folke, B.S. Halpern, B.C. Jeremy, H.K. Jackson, F.M. Lotze, S.R. Palumbi, E. Sala, K.A. Selkoe, J.J. Stachowicz, and R. Watson. 2006. Impacts of biodiversity loss on ocean ecosystem services. Science 314: 787–790.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by Geomatics for Informed Decision (GEIODE) (Project PIV-41, “The Participatory Geoweb for Engaging the Public on Global Environmental Change”). We thank Dr. Jeanine Rhemtulla for useful discussions on landscape ecology techniques and Dr. Margaret Kalacska on the processing of LIDAR, multispectral remote sensing data, and for providing access to powerful laboratory computers. We appreciate the comments of two anonymous reviewers, which helped to improve the manuscript. Michele Dionne graciously provided us with the data needed to assess how the relationship between marshes and fish use might change with rising sea levels. Dr. Dionne was not only a personal friend, but a valuable colleague and mentor who helped us realize the importance of marshes to estuarine fish.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dante D. Torio.

Additional information

Communicated by Nuria Marba

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torio, D.D., Chmura, G.L. Impacts of Sea Level Rise on Marsh as Fish Habitat. Estuaries and Coasts 38, 1288–1303 (2015). https://doi.org/10.1007/s12237-013-9740-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-013-9740-y

Keywords

Navigation