Skip to main content
Log in

Assessment of Growth, Tuber Elemental Composition, Stomatal Conductance and Chlorophyll Content of Two Potato Cultivars Under Irrigation with Fly Ash-Treated Acid Mine Drainage

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The impact of fly ash (FA)-treated acid mine drainage (AMD) on growth, tuber yield and elemental composition, stomatal conductance and chlorophyll content of two potato cultivars was assessed. Two potato cultivars were irrigated with the following treatments: tap water (0% AMD/control), acid mine drainage mixed with fly ash (v/v); 25% AMD, 50% AMD & 75% AMD and untreated AMD (100% AMD). A complete randomized block design pot experiment with six replicates per treatment was conducted in two cropping seasons. Irrigation with 75% AMD in both cropping seasons significantly increased growth and tuber yield compared with control. However, unsafe levels of Ni, Zn, and Sr were found in tubers of both cultivars irrigated with FA-treated AMD treatments in both seasons. Additionally, FA-treated AMD treatments reduced leaf stomatal conductance and chlorophyll content relative to control in both cultivars. Cultivar response was found to differ with respect to all measured parameters.

Resumen

Se evaluó el impacto del drenaje ácido de las minas (AMD en inglés) tratado con ceniza de carbón (FA en inglés) sobre el crecimiento, rendimiento, composición elemental, conductancia estomatal y contenido de clorofila, en dos variedades de papa. Se regó a las dos variedades con los siguientes tratamientos: agua normal (0% AMD/testigo), drenaje ácido de las minas mezclado con ceniza de carbón (v/v); 25% AMD, 50% AMD & 75% AMD y AMD sin tratar (100% AMD). Durante dos ciclos de cultivo, se condujo un experimento en macetas con un diseño de bloques completos al azar con seis repeticiones por tratamiento. El riego con 75% AMD en ambos ciclos aumentó significativamente el crecimiento y el rendimiento de tubérculo en comparación con el testigo. No obstante, se encontraron niveles inseguros de Ni, Zn, y Sr en tubérculos de ambas variedades regadas con los tratamientos de AMD tratado con FA en ambos ciclos. Además, los tratamientos con AMD tratado con FA redujeron la conductancia estomatal de la hoja y el contenido de clorofila en relación con el testigo en ambas variedades. Se encontró que la respuesta varietal difería con respecto a todos los parámetros medidos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad, K., A. Ejaz, M. Azam, and A. Bayat. 2011. Lead, cadmium and chromium contents of canola irrigated with sewage water. Pakistan Journal of Botany 43 (2): 1403–1410.

    CAS  Google Scholar 

  • Ali, B., B. Wang, S. Ali, M. Ghani, M. Hayat, C. Yang, L. Xu, and W. Zhou. 2013. 5-aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. Journal of Plant Growth Regulation 32 (3): 604–614.

    Article  CAS  Google Scholar 

  • Basu, M., M. Pande, P.B.S. Bhadoria, and S.C. Mahapatra. 2008. Potential fly-ash utilization in agriculture: a global review. Progress in Natural Science 19: 1173–1186.

    Article  Google Scholar 

  • Department of Water Affairs and Forestry (DWAF). 1996. South African Water Quality Guidelines (2 nd edition). Vol. 4, 39–170. Agricultural Water Use: Irrigation.

    Google Scholar 

  • Du Plessis, H.M. 1983. Using lime treated acid mine water for irrigation. Water Science and Technology 15: 145–154.

    Google Scholar 

  • Dunbar, K.R., M.J. Mclaughlin, and R.J. Reid. 2003. The uptake and partitioning of cadmium in two cultivars of potato (Solanum tuberosum L.). Journal of Experimental Botany 54 (381): 349–354.

    Article  CAS  PubMed  Google Scholar 

  • Elloumi, N., F. Ben, A. Rhouma, B. Ben, I. Mezghani, and M. Boukhris. 2007. Cadmium induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiogiae Plantarum 29: 57–62.

    Google Scholar 

  • Garg, N., and H. Kaur. 2013. Impact of cadmium-zinc interactions on metal uptake, translocation and yield in pigeon pea genotypes colonized by arbuscular mycorrhizal fungi. Journal of Plant Nutrition 36: 67–90.

    Article  CAS  Google Scholar 

  • Harris, M.R., Harrison, S.J., Wilson, N.J., and Lepp, N.W. 1981. Varietal differences in trace metal partitioning by six potato cultivars grown on contaminated soil. In: Proceedings of the international conference on heavy metals in the environment. Edinburgh: CEP Consultants, 399–402.

  • Huang, C.L., and E. Schulte. 1985. Digestion of plant tissue for analysis by ICP emission spectroscopy. Communications in Soil Science and Plant Analysis 16 (9): 943–958.

    Article  CAS  Google Scholar 

  • Humphrey, B., and J.M. Vincent. 1962. Calcium in cell walls of Rhizobium trifolii. Journal of Microbiology 29: 557–561.

    CAS  Google Scholar 

  • Islam, A.K.M., D.G. Edwards, and C.J. Asher. 1980. pH optima for plant growth. Journal of Plant and Soil 54: 339–357.

    Article  Google Scholar 

  • John, R., P. Ahmad, K. Gadgil, and S. Sharma. 2009. Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. International Journal of Plant Production 3 (3): 65–76.

    CAS  Google Scholar 

  • Jovanovic, N.Z., R.O. Barnard, N.F.G. Rethman, and J.G. Annandale. 1998. Crops can be irrigated with lime-treated acid mine drainage. Water South Africa 24 (2): 113–122.

    CAS  Google Scholar 

  • Kirham, M.B. 2006. Cadmium in plants on polluted soils: effects of soil factors hyperaccumulation and amendments. Geoderma 137: 19–32.

    Article  Google Scholar 

  • Lopez-Millan, A.F., D.R. Ellis, and M.A. Grusak. 2005. Effect of zinc and manganese supply on the activities of superoxide dismutase and carbonic anhydrase in Medicago truncatula wild type and raz mutant plants. Plant Sciences 168: 1015–1022.

    Article  CAS  Google Scholar 

  • McLaughlin, M.J., L.T. Palmer, K.G. Tiller, A. Beech, and M.K. Smart. 1994. Increased soil salinity causes elevated cadmium concentrations in field-grown potato tubers. Journal of Environmental Quality 23: 1013–1018.

    Article  CAS  Google Scholar 

  • McLaughlin, M.J., K.G. Tiller, and M.K. Smart. 1997. Speciation of cadmium in soil solutions of saline/sodic soils and relationship with cadmium concentrations in potato tubers (Solanum tuberosum L.). Australian Journal of Soil Research 35: 183–198.

    Article  CAS  Google Scholar 

  • Moya, J., R. Ros, and I. Picazo. 1993. Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosynthesis Research 36 (2): 75–80.

    Article  CAS  PubMed  Google Scholar 

  • Nagajyoti, P.C., K.D. Lee, and T.V.M. Sreekanth. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters 8: 199–216.

    Article  CAS  Google Scholar 

  • Naicker, K., E. Cukrowska, and T.S. McCarthy. 2003. Acid mine drainage arising from gold mining activity in Johannesburg. South African Journal of Environmental Pollution 122: 29–40.

    Article  CAS  Google Scholar 

  • Öncel, I., Y. Keleş, and A. Üstün. 2000. Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. Environmental Pollution 107 (3): 315–320.

    Article  PubMed  Google Scholar 

  • Özkay, F., S. Kiran, I. Taş, and S. Kuşvuran. 2014. Effects of copper, zinc, lead and cadmium applied with irrigation water on some eggplant plant growth parameters and soil properties. Turkish Journal of Agricultural and Natural Sciences 1 (3): 377–383.

    Google Scholar 

  • Pandey, N., and C.P. Sharma. 2002. Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Science 163 (4): 753–758.

    Article  CAS  Google Scholar 

  • Pandey, N., G.C. Pathak, D.K. Pandey, and R. Pandey. 2009. Heavy metals, Co, Ni, Cu, Zn and Cd, produce oxidative damage and evoke differential antioxidant responses in spinach. Brazilian Society of Plant Physiology 21 (2): 103–111.

    Article  Google Scholar 

  • Pourrut, B., M. Shahid, C. Dumat, O. Winterton, and E. Pinelli. 2011. Lead stress effects on physiobiochemical activities of higher plants. Reviews of Environmental Contamination and Toxicology 196: 73–93.

    Google Scholar 

  • Sengar, R.S., M. Gautam, R.S. Sengar, S.K. Garg, K. Sengar, and R. Chaudhary. 2008. Lead uptake, toxicity, and detoxification in plants. Reviews of Environmental Contamination and Toxicology 213: 113–136.

    Google Scholar 

  • Sharma, R.K., and M. Agrawal. 2005. Biological effects of heavy metals: an overview. Journal of Environmental Biology 26 (2): 301–313.

    CAS  PubMed  Google Scholar 

  • Siedlecka, A., and Z. Krupa. 1996. Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris. Plant Physiology and Biochemistry 34: 833–841.

    CAS  Google Scholar 

  • Soltangheisi, A., Z.A. Rahman, and C.F. Ishak. 2014. Interactive effect of zinc and manganese on growth, uptake response and chlorophyll content of sweet corn (Zea mays var saccharata). Asian Journal of Plant Sciences 13 (1): 26–33.

    Article  CAS  Google Scholar 

  • Vadapali, V.R.K., M.W. Gitari, L.F. Petrik, O. Etchebers, and A. Ellendt. 2012. Integrated acid mine drainage management using fly ash. Journal of Environmental Science and Health 47: 60–69.

    Article  Google Scholar 

  • Vadapalli, V.R.K., M.J. Klink, O. Etchehebers, L.F. Petrik, W. Gitari, R.A. White, D. Key, and E. Iwuoha. 2008. Neutralization of acid drainage using fly ash, and strength development of the resulting solid residues. South African Journal of Science 104: 317–322.

    CAS  Google Scholar 

  • Van Assche, F., and H. Clijsters. 1990. Effects of metals on enzyme activity in plants. Journal of Plant Cell and Environment 13: 195–198.

    Article  CAS  Google Scholar 

  • Vasiliadou, S., and C. Dordas. 2009. Increased concentration of soil cadmium effects on plant growth, dry matter accumulation, Cd and Zn uptake of different tobacco cultivars (Nicotiana tabacum L.). International Journal of Phytoremediation 11: 10–22.

    Article  Google Scholar 

  • Zengin, F.K., and O. Munzuroglu. 2006. Toxic effects of cadmium (Cd++) on metabolism of sunflower (Helianthus annuus L.) seedlings. Acta Agricultural Escandinavica Section B. Plant Soil Science 56: 224–229.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the University of South Africa for funding this project and thank Mr. Du Plessis of First Potato Dynamics Company (FPD) for providing certified potato seeds and Ms. B. Heichler (Ulula Fly Ash) for assistance in securing fly ash for the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheku Alfred Kanu.

Ethics declarations

Declaration

The experiments comply with the current laws of the Republic of South Africa as all ethical compliance requirements were satisfied.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemutanzhela, M.V., Modise, D.M., Siyoko, K.J. et al. Assessment of Growth, Tuber Elemental Composition, Stomatal Conductance and Chlorophyll Content of Two Potato Cultivars Under Irrigation with Fly Ash-Treated Acid Mine Drainage. Am. J. Potato Res. 94, 367–378 (2017). https://doi.org/10.1007/s12230-017-9572-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-017-9572-6

Keywords

Navigation