Skip to main content

Advertisement

Log in

Isolation, Purification and Characterization of Phytotoxins Produced by Rhizoctonia solani AG-3, the Cause Agent of Potato Stem Canker

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Studies were conducted to isolate and characterize the phytotoxins extracted from culture filtrates of Rhizoctonia solani isolate anastomosis group 3 (AG-3) using preparative thin layer chromatography (TLC) method. The culture filtrates of R. solani contain a toxic substance that causes canker on potato stems. Eight toxin fractions were collected by column layer chromatography but only four spots were obtained in the TLC analysis. All the four toxin fractions (third, fourth, sixth and seventh fractions) were recognised to have phytotoxic activity. Fourier-transform infrared spectroscopy (FTIR), high performance liquid chromatography (HPLC) and 1H and 13C NMR spectral techniques were used to characterize the phytotoxin. The major functional groups identified from FTIR spectrum includes 2962.1 cm−1 (−CH3), 1465.6 cm−1 (−CH2−), 1727.9 cm−1 (C = O), 1729.8 cm−1 (−COOH) and 1124.3 cm−1 (−OH). Result from HPLC, 1H NMR and 13C NMR showed phytotoxic fractions of 3-methylthiopropionic acid (3-MTPA) and 3-methylthioacrylic acid (3-MTAA). The results of this investigation add to the body of evidence that multiple related compounds are involved in R. solani disease development.

Resumen

Se desarrollaron estudios para aislar y caracterizar las fitotoxinas extraídas de filtrados de cultivo de un aislamiento de Rhizoctonia solani grupo de anastomosis 3 (AG-3), usando el método de cromatografía de capa fina (TLC). Los filtrados del cultivo de R. solani contienen una substancia tóxica que causa cáncer en los tallos de papa. Se colectaron ocho fracciones de la toxina por cromatografía de columna, pero solo se obtuvieron cuatro manchas en el análisis de TLC. A las cuatro fracciones (tercera, cuarta, sexta y séptima) se les reconoció que tenían actividad fitotóxica. Se usaron técnicas de espectrometría de espectroscopía de infrarrojos transformada de Fournier (FTIR), cromatografía de líquidos de alta resolución (HPLC), y 1H y 13C NMR, para caracterizar la fitotoxina. Los principales grupos funcionales identificados del espectro del FTIR incluyen 2962.1 cm−1 (−CH3), 1465.6 cm−1 (−CH2-), 1727.9 cm−1 (C = O), 1729.8 cm−1 (−COOH) y 1124.3 cm−1 (−OH). Los resultados del HPLC, 1HNMR y 13C NMR mostraron fracciones fitotóxicas de ácido 3-metiltiopropionico (3-MTPA) y ácido 3-metiltioacrilico (3-MTAA). Los resultados de esta investigación le agregan al cuerpo de evidencia que múltiples compuestos relacionados están involucrados en el desarrollo de la enfermedad por R. solani.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bartz, F.E., N.J. Glassbrook, D.A. Danehower, and M.A. Cubeta. 2012. Elucidating the role of phenylacetic acid metabolic complex in the pathogenic activity of Rhizoctonia solani anastomosis group 3. Mycologia 104(4): 793–803.

    Article  CAS  Google Scholar 

  • Betancourt, O., and L. Ciampi. 2000. Contribution to the study and control of Rhizoctonia solani. isolation, extraction and bioassay of phenylacetic acid phytotoxicity produced in vitro by R. solani AG-3. Phytopathology 35(2): 119–125.

    Google Scholar 

  • Carling, D.E., S. Kuninaga, and K.A. Brainard. 2002. Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis group 2 (AG-2) and AG-B1. Phytopathology 92(1): 43–50.

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT. 2015. Available from www.faostat.org. Accessed on 24 July 2015.

  • Fiers, M., V. Edel-Hermann, C. Chatot, Y.L. Hingrat, C. Alabouvette, and C. Steinberg. 2012. Potato soilborne diseases, a review. Agronomy for Sustainable Development 32: 93–132.

    Article  Google Scholar 

  • Frank, J.A., and S.K. Francis. 1976. The effect of a Rhizoctonia solani phytotoxin on potatoes. Canadian Journal of Botany 54: 2536–2540.

    Article  CAS  Google Scholar 

  • Friesen, T.L., J.D. Faris, P.S. Solomon, and R.P. Oliver. 2008. Host-specific toxins: effectors of necrotrophic pathogenicity. Cellular Microbiology 10: 1421–1428.

    Article  CAS  PubMed  Google Scholar 

  • Iacobellis, N.S., and J.E. Devay. 1987. Studies on pathogenesis of Rhizoctonia solani in beans: an evaluation of the possible roles of phenylacetic acid and its hydroxy derivatives as phytotoxins. Physiological and Molecular Plant Pathology 30: 421–432.

    Article  CAS  Google Scholar 

  • Kohmoto, K., and S. Nishimura. 1974. Pathochemical studies on rhizoctonia disease. II. Substrate specific meta-hydroxylation of aromatic acids by Rhizoctonia solani Kuhn. Annals of the Phytopathological Society of Japan 40: 79–85.

    Article  Google Scholar 

  • Lakshman, D.K., C. Liu, P.K. Mishra, and S. Tavantzis. 2006. Characterization of the arom gene in Rhizoctonia solani, and transcription patterns under stable and induced hypovirulence conditions. Current Genetics 49: 166–177.

    Article  CAS  PubMed  Google Scholar 

  • Liang, L., and A. Zheng. 2012. Preliminary characterization of the phytotoxin of sheath-blight disease of rice caused by Rhizoctonia solani. African Journal of Biotechnology 11(29): 7520–7527.

    CAS  Google Scholar 

  • Lu, X. 2014. Identification and biological characteristics of pathogen causing potato black scurf and pathogenesis of crude toxin produced by the pathogen, 17–25. Gansu Agricultural University, Lanzhou: MSc. Thesis.

    Google Scholar 

  • Lu, N.H., R.F. Xu, L.M. Wu, and D.F. Zhang. 2005. Effects of different media on the growth, reproduction and pathogenicity of Rhizoctonia Cerealis varder hoeven. Chinese Agricultural Science Botany 21(2): 262–263.

    Google Scholar 

  • Mandava, N.B., R.G. Orellana, D.J. Warthen, J.F. Worley, S.R. Dutky, H. Finegold, and B.C. Weathington. 1980. Phytotoxins in Rhizoctonia solani: isolation and biological activity of m-hydroxy- and m-methoxyphenylacetic acids. Journal of Agricultural and Food Chemistry 28(1): 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Nep, E.I., and B.R. Conway. 2010. Characterization of grewia gum, a potential pharmaceutical excipient. Journal of Excipients And Food Chemicals 1(1): 30–40.

    CAS  Google Scholar 

  • Oliver, R.P., and P.S. Solomon. 2008. Recent fungal diseases of crop plants: is lateral gene transfer a common theme? Molecular Plant-Microbe Interactions 21: 287–293.

    Article  CAS  PubMed  Google Scholar 

  • Pedras, M.S.C., Y. Yu, J. Liu, and Y.A. Tandron-Moya. 2005. Metabolites produced by the phytopathogenic fungus Rhizoctonia solani: Isolation, chemical structure determination, synthesis and bioactivity. Zeitschrift für Naturforschung 60c: 717–722.

    Google Scholar 

  • Perreaux, D., H. Maraite, and J.A. Meyer. 1982. Identification of 3-methylthiopropionic acid as a blight-inducing toxin produced by Xanthomonas campestris pv. manihotis in vitro. Physiological Plant Pathology 20: 313–319.

    Article  CAS  Google Scholar 

  • Robeson, D.J., and D.R. Cook. 1985. Production of low molecular weight carboxylic acids by Xanthomonas campestris Pv. campestris in relation to the amino acid composition of the medium and their possible involvement in pathogenesis. Physiological Plant Pathology 26: 219–230.

    Article  CAS  Google Scholar 

  • Shanmugaiah, N., N. Mathivanan, and B. Varghese. 2009. Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. Journal of Applied Microbiology 108: 703–711.

    Article  PubMed  Google Scholar 

  • Sowley, E.N.K., F. Kankam, and D. Afari. 2013. Evaluation of neem seed and ginger as potential control agents of yam (Dioscorea rotundata Poir.) tuber rot fungi. Archives of Phytopathology and Plant Protection. doi:10.1080/03235408.2013.785659.

    Google Scholar 

  • Tavantzis, S.M., B.L. Perkins, R.J. Bushway, and B.P. Bandy. 1989. Correlation between in vitro synthesis of phenylacetic acid and virulence in. Rhizoctonia solani. Phytopathology 79(10): 1199–1207.

    Google Scholar 

  • Tsror, L. 2010. Biology, epidemiology and management of Rhizoctonia solani on potato. Journal of Phytopathology 158(10): 649–658.

    Article  Google Scholar 

  • Tsror, L., and I. Peretz-Alon. 2005. The influence of the inoculum source of Rhizoctonia solani on development of black scurf on potato. Journal of Phytopathology 153: 240–244.

    Article  Google Scholar 

  • Vikrant, P., K.K. Verma, R.C. Rajak, and A.K. Pandey. 2006. Characterization of a phytotoxin from Phoma herbarum for management of Parthenium hysterophorus L. Journal of Phytopathology 154: 461–468.

    Article  CAS  Google Scholar 

  • Wolpert, T.J., L.D. Dunkle, and L.M. Ciuffetti. 2002. Host-selective toxins and avirulence determinants: What’s in a name? Annual Review of Phytopathology 40: 251–285.

    Article  CAS  PubMed  Google Scholar 

  • Woodhall, J.W., A.K. Lees, S.G. Edwards, and P. Jenkinson. 2008. Infection of potato by Rhizoctonia solani: effect of anastomosis group. Plant Pathology 57(5): 897–905.

    Article  Google Scholar 

  • Xu, J.Y., H.D. Zhang, H. Zhang, Y.H. Tong, Y. Xu, X.J. Chen, and Z.L. Ji. 2004. Toxin produced by Rhizoctonia solani and its relationship with pathogenicity of the fungus. Journal of Yangzhou University 25(2): 61–64.

    Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (31360500). We would like to thank Dr. Guorui Fu from the Department of Chemistry, Gansu Agriculture University, for his technical assistance obtaining FTIR and NMR data, respectively. The authors are also grateful to Ms. Xiaoqin Lu, from Gansu Provincial Key Lab of Aridland Crop Science, Gansu Agricultural University, for providing isolates of R. solani AG-3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frederick Kankam or Huizhen Qiu.

Ethics declarations

Disclaimer

The authors of this manuscript are solely responsible for the content thereof, and the findings and conclusions expressed by authors contributing to this journal do not necessarily reflect the opinions of the American Journal of Potato Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kankam, F., Qiu, H., Pu, L. et al. Isolation, Purification and Characterization of Phytotoxins Produced by Rhizoctonia solani AG-3, the Cause Agent of Potato Stem Canker. Am. J. Potato Res. 93, 321–330 (2016). https://doi.org/10.1007/s12230-016-9506-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-016-9506-8

Keywords

Navigation