Skip to main content
Log in

Strategies for Selecting Stable Common Scab Resistant Clones in a Potato Breeding Program

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Common scab (CS) of potato, caused by Streptomyces scabies, is an important disease in the US. CS problems can be avoided using resistant varieties. However, evaluating breeding clones can be complicated by high location and season-based soil and environmental variation. In this study we evaluated the efficacy of screening for CS resistance within the Wisconsin breeding program across multiple environments from 2006 to 2013. In each trial, 60–160 clones were evaluated. We compared the ability to select for CS resistance in a set of 18 dedicated CS screening trials (DST) versus 18 similar parallel standard breeding trials (SBT). Heritability for CS rating across DST was 0.83 vs. 0.53 in SBT. Data analysis from DST was able to separate CS susceptible cultivars (Atlantic, Snowden) from resistant cultivars (Pike, Snowden). However, same data analysis from SBT was not able to separate susceptible from resistant cultivars. Using DST datasets, we estimated the genotypic stability of scab performance across years and locations. We also calculated the probability distributions for the better or worse performance of a given clone vs. a standard variety. Using results from six or more DST we identified five round white clones that outperformed or matched CS tolerant Pike, eleven russet clones that outperformed or matched CS tolerant Russet Burbank and five red or yellow skin clones that outperformed or matched CS resistance level of Dark Red Norland. The approaches utilized here offer useful additional information for breeding programs which aim to improve selection efficiency for scab resistance.

Resumen

La roña común de la papa (CS), causada por Streptomyces scabies, es una enfermedad importante en los Estados Unidos. Los problemas por CS pueden evitarse usando variedades resistentes. No obstante, la evaluación de clones en mejoramiento puede complicarse por una alta variabilidad entre las localidades, las estaciones de cultivo y el ambiente en el suelo. En este estudio evaluamos la eficacia de examinar la resistencia a CS dentro del programa de mejoramiento de Wisconsin a lo largo de múltiples ambientes del 2006 al 2013. En cada ensayo se evaluaron de 60 a 160 clones. Comparamos la habilidad para seleccionar para resistencia a CS en un grupo de 18 ensayos específicos para CS (DST) contra 18 ensayos estándares de mejoramiento para rendimiento (SBT). Los niveles de la heredabilidad para CS a lo largo de DST fue de 0.83 vs 0.53 en SBT. El análisis de datos de DST fue capaz de separar variedades susceptibles a CS (Atlantic, Snowden) de las resistentes (Pike, Snowden). No obstante, el mismo análisis de datos de SBT no pudo separar a las variedades susceptibles de las resistentes. Con el uso de los datos de DST estimamos la estabilidad genotípica del comportamiento a la roña a lo largo de los años y localidades. También calculamos las distribuciones de probabilidad de los comportamientos de los clones estudiados vs variedades estándares. Mediante el uso de resultados de seis o más DST identificamos cinco clones redondos blancos que superaron o igualaron a la variedad tolerante a CS Pike, once clones del tipo russet que superaron o igualaron a la variedad tolerante a CS Russet Burbank y cinco clones rojos o de piel amarilla que superaron o igualaron al nivel de resistencia a CS de Dark Red Norland. Las estrategias utilizadas aquí ofrecen información adicional de utilidad para los programas de mejoramiento que tienen el propósito de mejorar la eficiencia de selección de clones para resistencia a roña.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CS:

Common scab

SBT:

Standard breeding trials

DST:

Dedicated common scab screening trials

H2 :

Heritability estimates on an entry-means basis

REML:

Restricted maximum likelihood

BLUP:

Best linear unbiased predictor

HARS:

Hancock Agricultural Research Station

RARS:

Rhinelander Agricultural Research Station

HFarms:

Heartland Farms, Hancock, WI.

References

  • Affleck, I., J. Alan Sullivan, R. Tarn, and R. Yada. 2012. Stability of eight potato genotypes for sugar content and French fry quality at harvest and after storage. Canadian Journal of Plant Science 92: 87–96.

    Article  Google Scholar 

  • Bang, H. 1979. Studies on potato russet scab. I. A characterization of different isolates from northern Sweden. Acta Agriculturae Scandinavica 29: 145–150.

    Article  Google Scholar 

  • Bernardo, R. 2002. Breeding for quantitative traits in plants, 2nd ed. Woodbury: Stemma Press.

    Google Scholar 

  • Cipar, M., and C. Lawrence. 1972. Scab resistance of haploids from two Solanum tuberosum cultivars. American Journal of Potato Research 49(3): 117–119.

    Article  Google Scholar 

  • Cordova, H., S. Trifunovic, A. Ramirez, and M. Sierra. 2007. CIMMYT maize hybrids for Latin America: Head-to-head analysis and probability of outperforming the best check. Maydica 52: 471–476.

    Google Scholar 

  • De Jong, H., G.C.C. Tai, W.A. Russell, G.R. Johnston, and K.G. Proudfoot. 1981. Yield potential and genotype-environment interactions of tetraploid-diploid (4x-2x) potato hybrids. American Potato Journal 58: 191–199.

    Article  Google Scholar 

  • Dees, M.W., and L.A. Wanner. 2012. In search of better management of potato common scab. Potato Research 55: 249–268.

    Article  Google Scholar 

  • Dionne, L., and C. Lawrence. 1961. Early scab-resistant derivatives of Solanum chacoense x Solanum phureja. American Journal of Potato Research 38(1): 6–8.

    Article  Google Scholar 

  • Driscoll, J., J. Coombs, R. Hammerschmidt, W. Kirk, L. Wanner, and D. Douches. 2009. Greenhouse and field nursery evaluation for potato common scab tolerance in a tetraploid population. American Journal of Potato Research 86: 96–101.

    Article  Google Scholar 

  • Eberhart, S.A., and W.A. Russell. 1966. Stability parameters for comparing varieties. Crop Science 6: 36–40.

    Article  Google Scholar 

  • Eskridge, K.M. 1990a. Selection of stable cultivars using a safety first rule. Crop Science 30: 369–374.

    Article  Google Scholar 

  • Eskridge, K.M. 1990b. Safety first models useful for selecting stable cultivars. In Genotype-by-environment interaction and plant breeding, ed. M.S. Kang. Baton Rouge: Louisiana State University.

    Google Scholar 

  • Eskridge, K.M. 1991. Screening cultivars for yield stability to limit the probability of disaster. Maydica 36: 275–282.

    Google Scholar 

  • Eskridge, K.M., and R.F. Mumm. 1992. Choosing plant cultivars on the probability of outperforming a check. Theoretical and Applied Genetics 84: 494–500.

    CAS  PubMed  Google Scholar 

  • Gillespie, L.J. 1918. The growth of the potato scab organism at various hydrogen ion concentrations as related to the comparative freedom of acid soils from the potato scab. Phytopathology 8: 257–269.

    Google Scholar 

  • Goth, R.W., K.G. Haynes, and D.R. Wilson. 1993. Evaluation and characterization of advanced potato breeding clones for resistance to scab by cluster analysis. Plant Disease 77: 911–914.

    Article  Google Scholar 

  • Goyer, C., and C. Beaulieu. 1997. Host range of streptomycete strains causing common scab. Plant Disease 81: 901–904.

    Article  Google Scholar 

  • Groza, H.I., B.D. Bowen, A.J. Bussan, W.R. Stevenson, F. Navarro, D. Kichefski, S.J. Peloquin, J. Palta, and J. Jiang. 2007. Megachip: A new potato variety for chipping. American Potato Journal 84: 343–349.

    Article  Google Scholar 

  • Hanson, L.E., and M.L. Lacy. 1990. Carrot scab caused by Streptomyces spp. in Michigan. Plant Disease 74: 1037.

    Article  Google Scholar 

  • Haynes, K.G., R.W. Goth, and R.J. Young. 1997. Genotype x environment interactions for resistance to common scab in tetraploid potato. Crop Science 37: 1163–1167.

    Article  Google Scholar 

  • Haynes, K.G., B.J. Christ, C.R. Burkhart, and B.T. Vinyard. 2009. Heritability of resistance to common scab in diploid potatoes. American Journal of Potato Research 86: 165–170.

  • Haynes, K.G., L.A. Wanner, C.A. Thill, J.M. Bradeen, J. Miller, R.G. Novy, J.L. Withworth, D.L. Corsini, and B.T. Vinyard. 2010. Common scab trials of potato varieties and advanced selections at three U.S. locations. American Journal of Potato Research 87: 261–276.

    Article  Google Scholar 

  • Hiltunen, L.H.A., A. Weckman, H. Yhlainen, E. Richter Rita, and J.P.T. Valkonen. 2005. Responses of potato cultivars to the common scab pathogens, Streptomyces scabies and S. turgidiscabies. Annals of Applied Biology 146: 395–403.

    Article  Google Scholar 

  • Hutchinson CM (2005) Evaluation of chloropicrin soil fumigation programs for potato (Solanum tuberosum L.) production. In Proceedings of the 118th Annual Meeting of the Florida State Horticultural Society, vol 118. Proceedings of the Florida State Horticultural Society. pp 129–131.

  • Janse, J.D. 1988. A Streptomyces species identified as the cause of carrot scab. Netherlands Journal of Plant Pathology 94: 303–306.

    Article  Google Scholar 

  • Jansky, S.H., and D.I. Rouse. 2003. Multiple disease resistance in interspecific hybrids of potato. Plant Disease 87: 266–272.

    Article  Google Scholar 

  • Jones, A.P. 1953. Parsnip canker. Nature 171: 574.

    Article  Google Scholar 

  • Krantz, F.A., and C.J. Eide. 1941. Inheritance of reaction to common scab in the potato. Journal of Agricultural Research 63: 219–231.

    Google Scholar 

  • Lacey, M.J., and C.R. Wilson. 2001. Relationship of common scab incidence of potatoes grown in Tasmanian ferrosol soils with pH, exchangeable cations and other chemical properties of those soils. Journal of Phytopathology-Phytopathologische Zeitschrift 149: 679–683.

    Article  CAS  Google Scholar 

  • Lambert, D.H. 1991. First report of additional hosts for the acid scab pathogen Streptomyces acidiscabies. Plant Disease 75: 750.

    Article  Google Scholar 

  • Lambert, D.H., and R. Loria. 1989. Streptomyces scabies sp. nov., norn. rev. International Journal of Systematic Bacteriology 39: 387–392.

    Article  Google Scholar 

  • Lapwood, D.H. 1966. The effects of soil moisture at the time potato tubers are forming on the incidence of common scab (Streptomyces scabies). Annals of Applied Biology 58: 447–456.

    Article  Google Scholar 

  • Lapwood, D.H., L.W. Wellings, and W.H. Rosser. 1970. The control of common scab of potatoes by irrigation. Annals of Applied Biology 66: 397–405.

    Article  Google Scholar 

  • Lapwood, D.H., L.W. Wellings, and J.H. Hawkins. 1971. Irrigation as a practical means to control potato common scab (Streptomyces scabies). Plant Pathology 20: 157–163.

  • Lapwood, D.H., L.W. Wellings, and J.H. Hawkins. 1973. Irrigation as a practical means to control potato common scab (Streptomyces scabies): Final experiment and conclusions. Plant Pathology 22: 35–41.

    Article  Google Scholar 

  • Larkin, R.P. 2008. Relative effects of biological amendments and crop rotations on soil microbial communities and soilborne diseases of potato. Soil Biology & Biochemistry 40: 1341–1351.

    Article  CAS  Google Scholar 

  • Lauer, F.I., and C.J. Eide. 1963. Evaluation of parent clones of potato for resistance to common scab by the “highest scab” method. European Potato Journal 6: 35–44.

    Article  Google Scholar 

  • Leach, J.G., F.A. Kranz, P. Decker, and H. Mattson. 1938. The measurement and inheritance of scab resistance in selfed and hybrid progenies of potatoes. Journal of Agricultural Research 56: 843–854.

    Google Scholar 

  • Lindholm, P., H. Kortemaa, M. Kokkola, K. Haahtela, M. Salkinoja-Salonen, and J.P.T. Valkonen. 1997. Streptomyces spp. isolated from potato scab lesions under Nordic conditions in Finland. Plant Disease 81: 1317–1322.

    Article  CAS  Google Scholar 

  • Littell, R.C., G.A. Milliken, W.W. Stroup, and R.D. Wolfinger. 1996. SAS systems for linear models. Cary: SAS Inst.

    Google Scholar 

  • Loria, 1991. Potato scab. Cornell Cooperative Service Factsheet 725.80, October 1991.

  • Loria, R., R.A. Bukhalid, B.A. Fry, and R.R. King. 1997. Plant pathogenicity in the genus Streptomyces. Plant Disease 81: 836–846.

    Article  Google Scholar 

  • McKee, R. 1958. Assessment of the resistance of potato varieties to common scab. Potato Research 1: 65–80.

    Article  Google Scholar 

  • McKee, R.K. 1963. Scab resistance of potato varieties. Plant Pathology 12: 106–109.

    Article  Google Scholar 

  • McLean, R.A., W.L. Sanders, and W.W. Stroup. 1991. A unified approach to mixed linear models. American Statistician 45: 54–64.

    Google Scholar 

  • Murphy, A.M., H. Jong, and G.C.C. Tai. 1995. Transmission of resistance to common scab from the diploid to the tetraploid level via 4x-2x crosses in potatoes. Euphytica 82: 227–233.

    Article  Google Scholar 

  • Nyquist, W.E. 1991. Estimation of heritability and prediction of selection response in plant populations. Critical Reviews in Plant Science 10: 235–322.

    Article  Google Scholar 

  • Patterson, H.D., and R. Thompson. 1971. Recovery of inter-block information when block sizes are unequal. Biometrika 58: 545–554.

    Article  Google Scholar 

  • Rak, K., F.M. Navarro, and J.P. Palta. 2013. Genotype × storage environment interaction and stability of potato chip color: Implications in breeding for cold storage chip quality. Crop Science 53: 1944–1952.

    Article  Google Scholar 

  • SAS Institute. 2011. SAS for Windows 9.3. Cary, NC: SAS Institute.

  • Scholte, K. 1992. Effect of crop rotation on the incidence of soil-borne fungal diseases of potato. Netherlands Journal of Plant Pathology 98(Supplement): 93–101.

    Article  Google Scholar 

  • Schultz, W.M., and C.C. Cockerham. 1966. The effect of field blocking on gain from selection. Biometrics 22: 843–863.

    Article  Google Scholar 

  • Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity 29: 237–245.

  • Stevenson, F.J., L.A. Schall, C.F. Clark, and R.V. Akeley. 1942. Potato scab garden in the United States. Phytopathology 32: 965–971.

    Google Scholar 

  • Tai, G.C.C. 1971. Genotypic stability analysis and its application to potato regional trials. Crop Science 11: 184–190.

    Article  Google Scholar 

  • Waksman, S.A., and A.T. Henrici. 1948. Family III. Streptomycetaceae Waksman & Henrici. In Bergey’s manual of determinative bacteriology, 6th ed, ed. R.S. Breed, E.G.D. Murray, and A.P. Hitchens, 929–980. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Wanner. 2006. A survey of genetic variation in Streptomyces isolates causing potato common scab in the United States. Phytopathology 96: 1363–1371.

    Article  CAS  PubMed  Google Scholar 

  • Wanner. 2009. A patchwork of Streptomyces scabies isolated from potato common scab lesions in North America. American Journal of Potato Research 86: 247–264.

    Article  Google Scholar 

  • Wanner, L.A., and K.G. Haynes. 2009. Agressiveness of Streptomyces on four potato cultivars and common scab resistance breeding. American Journal of Potato Research 86: 335–346.

    Article  Google Scholar 

  • Waterer, D. 2002. Impact of high soil pH on potato yields and grade losses to common scab. Canadian Journal of Plant Science 82(3): 583–586.

    Article  Google Scholar 

  • Wharton P, J. Driscoll, D. Douches, R. Hammerschmidt, and W. Kirk. 2007. Common scab of potato. Extension Bulletin E-2990. 4 pp. http://www.potatodiseases.org/pdf/common-potato-scab-bulletin.pdf. Accessed 1 July 2014.

Download references

Acknowledgments

Research was supported by USDA NIFA grants (PI: J. Palta and F. Navarro), the University of Wisconsin-Madison College of Agricultural and Life Sciences, the Wisconsin Potato Industry Board. The authors thank the staff at the Hancock and Rhinelander Agricultural Research Stations. Special thanks to Heartland Farms, Inc. for contributing and managing a testing location for these trials.

Disclaimer

Reported use of brand name products does not imply an endorsement by the University of Wisconsin-Madison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix M. Navarro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro, F.M., Rak, K.T., Banks, E. et al. Strategies for Selecting Stable Common Scab Resistant Clones in a Potato Breeding Program. Am. J. Potato Res. 92, 326–338 (2015). https://doi.org/10.1007/s12230-015-9435-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-015-9435-y

Keywords

Navigation