Skip to main content

Advertisement

Log in

A two-dimensional protein map of Pleurotus ostreatus microsomes-proteome dynamics

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Recent studies documented that several processes in filamentous fungi are connected with microsomal enzyme activities. In this work, microsomal subproteomes of Pleurotus ostreatus were analyzed by two-dimensional (2-D) polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis. To assess proteome dynamics, microsomal proteins were isolated from fungal cultures after 7 and 12 days of cultivation. Additionally, 10 mg/L of 17α-ethinylestradiol (EE2) was treated with the cultures during 2 days. Despite the EE2 degradation by the fungus reached 97 and 76.3 % in 7- and 12-day-old cultures, respectively, only a minor effect on the composition of microsomal proteins was observed. The changes in protein maps related to ageing prevailed over those induced by EE2. Epoxide hydrolase, known to metabolize EE2, was detected in 12-day-old cultures only which suggests differences in EE2 degradation pathways utilized by fungal cultures of different age. The majority (32 %) of identified microsomal proteins were parts of mitochondrial energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Abdallah C, Dumas-Gaudot E, Renaut J, Sergeant K (2012) Gel-based and gel-free quantitative proteomics approaches at a glance. Int J Plant Genomics. doi:10.1155/2012/494572

  • Andrin C, Pinkoski MJ, Burns K, Atkinson EA, Krahenbuhl O, Hudig D, Fraser SA, Winkler U, Tschopp J, Opas M, Bleackley RC, Michalak M (1998) Interaction between a Ca2+-binding protein calreticulin and perforin, a component of the cytotoxic T-cell granules. Biochemistry 37:10386–10394

    Article  PubMed  CAS  Google Scholar 

  • Baksh S, Burns K, Andrin C, Michalak M (1995) Interaction of calreticulin with protein disulfide isomerase. J Biol Chem 270(52):31338–31344

    Article  PubMed  CAS  Google Scholar 

  • Bezalel L, Hadar Y, Cerniglia CE (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 63(7):2495–2501

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cajthaml T, Křesinová Z, Svobodová K, Moeder M (2009) Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere 75:745–750

    Article  PubMed  CAS  Google Scholar 

  • Chimi MA, Drose S, Wittig I, Heide H, Steger M, Werner A, Hamann A, Osiewacz HD, Brandt U (2013) Age-related changes in the mitochondrial proteome of the fungus Podospora anserine analyzed by 2D-DIGE and LC-MS/MS. J Proteomics 91:358–374

    Article  PubMed  CAS  Google Scholar 

  • Cohen N, Cohen J, Asatiani MD, Varshney VK, Yu HT, Yang YC, Li YH, Mau JL, Wasser SP (2014) Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher basidiomycetes mushrooms. Int J Med Mushrooms 16(3):273–291

    Article  PubMed  CAS  Google Scholar 

  • Covino S, Svobodová K, Křesinová Z, Petruccioli M, Federici F, D’Annibale A, Čvančarová M, Cajthaml T (2010) In vivo and in vitro polycyclic aromatic hydrocarbons degradation by Lentinus (Panus) tigrinus CBS 577.79. Bioresour Technol 101(9):3004–3012. doi:10.1016/j.biortech.2009.12.020

    Article  PubMed  CAS  Google Scholar 

  • De Oliveira JMPF, VanPassel MWJ, Schaap PJ, DeGraaff LH (2010) Shotgun proteomics of Aspergillus niger microsomes upon D-xylose induction. Appl Environ Microbiol 76(13):4421–4429

    Article  PubMed Central  Google Scholar 

  • De Oliveira JMPF, VanPassel MWJ, Schaap PJ, DeGraaff LH (2011) Proteomic analysis of the secretory response of Aspergillus niger to D-maltose and D-xylose. PLoS One 6(6):e20865

    Article  PubMed  Google Scholar 

  • De Oliveira JR, Seleghim MHR, Porto ALM (2014) Biotransformation of methylphenylacetonitriles by Brazilian marine fungal strain Aspergillus sydowii CBMAI 934: eco-friendly reactions. Marine Biotechnol 16(2):156–160. doi:10.1007/s10126-013-9534-z

    Article  Google Scholar 

  • Fernandes A, Barros L, Martins A, Herbert P, Ferreira ICFR (2015) Nutritional characterisation of Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm. produced using paper scraps as substrate. Food Chem 169:396–400. doi:10.1016/j.foodchem.2014.08.027

    Article  PubMed  CAS  Google Scholar 

  • Fragner D, Zomorrodi M, Kues U, Majcherczyk A (2009) Optimized protocol for the 2-DE of extracellular proteins from higher basidiomycetes inhabiting lignocellulose. Electrophoresis 30(14):2431–2441. doi:10.1002/elps.200800770

    Article  PubMed  CAS  Google Scholar 

  • Galeva N, Altermann M (2002) Comparison of one-dimensional and two-dimensional gel electrophoresis as a separation tool for proteomic analysis of rat liver microsomes: cytochromes P450 and other membrane proteins. Proteomics 2:713–722

    Article  PubMed  CAS  Google Scholar 

  • Gogavekar SS, Rokade SA, Ranveer RC, Ghosh JS, Kalyani DC, Sahoo AK (2014) Important nutritional constituents, flavour components, antioxidant and antibacterial properties of Pleurotus sajor-caju. J Food Sci Technol- Mysore 51(8):1483–1491. doi:10.1007/s13197-012-0656-5

    Article  CAS  Google Scholar 

  • Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Factories 11:142–169

    Article  CAS  Google Scholar 

  • Jez JM, Penning TM (2001) The aldo-keto reductase (AKR) superfamily: an update. Chem Biol Interact 130(1–3 SI):499–525. doi:10.1016/S0009-2797(00)00295-7

    Article  PubMed  Google Scholar 

  • Koen YM, Sarma D, Hajovsky H, Galeva NA, Williams TD, Staudinger JL, Hanzlik RP (2013) Protein targets of thioacetamide metabolites in rat hepatocytes. Chem Res Toxicol 26:564–574

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Křesinová Z, Moeder M, Ezechiáš M, Svobodová K, Cajthaml T (2012) Mechanistic study of 17a-ethinylestradiol biodegradation by Pleurotus ostreatus: tracking of extracellular and intracellular degradation mechanisms. Environ Sci Technol 46:13377–13385

    Article  PubMed  Google Scholar 

  • Macellaro G, Barrato MC, Piscitelli A, Pezzella C, de Biani FF, Palmese A, Piumi F, Record E, Basosi R, Sannia G (2014) Effective mutations in a high redox potential laccase from Pleurotus ostreatus. Appl Microbiol Biotechnol 98(11):4949–4961. doi:10.1007/s00253-013-5491-8

    Article  PubMed  CAS  Google Scholar 

  • Nguyen QB, Kadotani N, Kasahara S, Tosa Y, Mayama S, Nakayashiki H (2008) Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol 68(6):1348–1365. doi:10.1111/j.1365-2958.2008.06242.x

    Article  PubMed  CAS  Google Scholar 

  • Ota K, Leonardi A, Mikelj M, Skočaj M, Wohlschlager T, Kunzler M, Aebi M, Narat M, Kriřaj I, Anderluh G, Sepčic K, Maček P (2013) Membrane cholesterol and sphingomyelin, and ostreolysin A are obligatory for pore-formation by a MACPF/CDC-like pore-forming protein, pleurotolysin B. Biochimie 95(10):1855–1864. doi:10.1016/j.biochi.2013.06.012

    Article  PubMed  CAS  Google Scholar 

  • Ota K, Butala M, Viero G, Dalla Serra M, Sepčic K, Maček P (2014) Fungal MACPF-like proteins and aegerolysins: bi-component pore-forming proteins? Subcell Biochem 80:271–291. doi:10.1007/978-94-017-8881-6_14

    Article  PubMed  CAS  Google Scholar 

  • Pechanova O, Pechan T, Rodriguez JM, Williams WP, Brown AE (2013) A two-dimensional proteome map of the aflatoxigenic fungus Aspergillus flavus. Proteomics 13(9):1513–1518. doi:10.1002/pmic.201100659

    Article  PubMed  CAS  Google Scholar 

  • Petráčková D, Buriánková K, Tesařová E, Bobková Š, Bezoušková S, Benada O, Kofroňová O, Janeček J, Halada P, Weiser J (2013) Surface hydrophobicity and roughness influences the morphology and biochemistry of streptomycetes during attached growth and differentiation. FEMS Microbiol Lett 342:147–156

    Article  PubMed  Google Scholar 

  • Plačková M, Svobodová K, Cajthaml T (2012) Laccase activity profiling and gene expression in PCB-degrading cultures of Trametes versicolor. Int Biodeter Biodegr 71:22–28

    Article  Google Scholar 

  • Plagemann I, Krings U, Berger RG (2014) Isolation and characterization of wild-type lipoxygenase LOX(psa)l from Pleurotus sapidus. Z Naturforsch C- A J Biosci 69(3–4):149–154. doi:10.5560/ZNC.2013-0133

    CAS  Google Scholar 

  • Poidevin L, Berrin JG, Bennati-Granier C, Levasseur A, Herpoel-Gimbert I, Chevret D, Coutinho PM, Henrissat B, Heiss-Blanquet S, Record E (2014) Comparative analyses of Podospora anserina secretomes reveal a large array of lignocellulose-active enzymes. Appl Microbiol Biotechnol 98(17):7457–7469. doi:10.1007/s00253-014-5698-3

    Article  PubMed  CAS  Google Scholar 

  • Poucheret P, Fons F, Rapior S (2006) Biological and pharmacological activity of higher fungi: 20-year retrospective analysis. Cryptogam Mycol 27(4):311–333

    Google Scholar 

  • Salvachua D, Martinez AT, Tien M, Lopez-Lucendo MF, Garcia F, de los Rios V, Martinez MJ, Prieto A (2013) Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment. Biotechnol Biofuels 6:115. doi:10.1186/1754-6834-6-115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schuettmann I, Bouws H, Szweda RT, Suckow M, Czermak P, Zorn H (2014) Induction, characterization, and heterologous expression of a carotenoid degrading versatile peroxidase from Pleurotus sapidus. J Mol Catal B- Enzymatic 103(SI):79–84. doi:10.1016/j.molcatb.2013.08.007

    Article  CAS  Google Scholar 

  • Shary S, Kapich AN, Panisko EA, Magnuson JK, Cullen D, Hammel KE (2008) Differential expression in Phanerochaete chrysosporium of membrane-associated proteins relevant to lignin degradation. Appl Environ Microbiol 74(23):7252–7257

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Svobodová K, Mikesková H, Petráčková D (2013) Fungal microsomes in a biotransformation perspective: protein nature of membrane-associated reactions. Appl Microbiol Biotechnol 97(24):10263–10273. doi:10.1007/s00253-013-5347-2

    Article  PubMed  Google Scholar 

  • Szewczyk R, Sobon A, Sylwia R, Dzitko K, Waidelich D, Dlugonski J (2014) Intracellular proteome expression during 4-n-nonylphenol biodegradation by the filamentous fungus Metarhizium robertsii. Int Biodeter Biodegr 93:44–53. doi:10.1016/j.ibiod.2014.04.026

    Article  CAS  Google Scholar 

  • Wartenberg D, Lapp K, Jacobsen ID, Dahse HM, Kniemeyer O, Heinekamp T, Brakhage AA (2011) Secretome analysis of Aspergillus fumigatus reveals Asp-hemolysin as a major secreted protein. Int J Med Microbiol 301(7):602–611. doi:10.1016/j.ijmm.2011.04.016

    Article  PubMed  CAS  Google Scholar 

  • Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  PubMed  CAS  Google Scholar 

  • Zhang BB, Chen L, Cheung PCK (2012) Proteomic insights into the stimulatory effect of Tween 80 on mycelial growth and exopolysaccharide production of an edible mushroom Pleurotus tuber-regium. Biotechnol Lett 34(10):1863–1867. doi:10.1007/s10529-012-0975-7

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the project A/13/07824 of the German Academic Exchange Service, the grant no. 15-02328S of the Czech Science Foundation, and the Institutional Research Concept RVO: 61388971. In this work, instrumental equipment provided by C4Sys infrastructure was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateřina Svobodová.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Raw images of 2-DE gels of 7 days-old cultures of P. ostreatus (GIF 231 kb)

High resolution image (TIFF 848 kb)

Fig. S2

Raw images of 2-DE gels of 12 days-old cultures of P. ostreatus (GIF 260 kb)

High resolution image (TIFF 912 kb)

Fig. S3

Computerized image of protein maps of 7 days-old P. ostreatus cultures (“Master gel”). Statistically significant proteins are marked in red. (GIF 145 kb)

High resolution image (TIFF 94 kb)

Fig. S4

Computerized image of protein maps of 12 days-old P. ostreatus cultures (“Master gel”). Statistically significant proteins are marked in red. (GIF 147 kb)

High resolution image (TIFF 134 kb)

Tab. S1

Summary matching report for 2-DE gel comparisons. (PDF 195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petráčková, D., Halada, P., Bezoušková, S. et al. A two-dimensional protein map of Pleurotus ostreatus microsomes-proteome dynamics. Folia Microbiol 61, 63–71 (2016). https://doi.org/10.1007/s12223-015-0410-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-015-0410-2

Keywords

Navigation