Skip to main content
Log in

Influence of carboxylic acids on mechanical properties of thermoplastic starch by spray drying

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Biodegradable packaging is gaining much attention in food industry as the awareness on sustainability has increased. Thermoplastic starch is a possible alternative. This study evaluated the influence of malic acid (MA) and citric acid (CA), used as a plasticizer, on the mechanical properties of thermoplastic starch (TPS) obtained by spray drying. TPS powder was produced from solution spray drying. This powder was further compression molded to prepare TPS dog-bone test samples. X-ray Diffraction (XRD) results showed that both the spray dried TPS powder and dog-bone test samples were amorphous in nature irrespective of the amount of plasticizer added. Scanning electron microscope (SEM) was used to examine the morphology of solution spray dried TPS powder. No noticeable difference was observed in the morphology. Particles were spherical in shape with homogenous surface. The FT-IR analysis indicated the interaction of plasticizers with starch chains by hydrogen bonding. During TGA analysis, apart from moisture loss at 100 °C, samples were thermally stable up to 170 °C. Mechanical testing of TPS dog-bone revealed that sample containing malic acid as plasticizer exhibited a more elastic behavior as compared to citric acid plasticized formulations. It was revealed that the tensile strength of TPS dog-bone samples was inversely proportional to the quantity of plasticizer used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Weber, V. Haugaard, R. Festerson, and G. Bertelson, Food Addit. Contam., 19, 172 (2002).

    Article  CAS  Google Scholar 

  2. M. G. L. Ramirez, K. G. Satyanarayana, S. Iwakiri, G. B. de Muniz, V. Tanobe, and T. S. Flores-Sahagun, Carbohydr. Polym., 86, 1712 (2011).

    Article  CAS  Google Scholar 

  3. N. Wang, J. Yu, P. R. Chang, and X. Ma, Carbohydr. Polym., 77, 109 (2008).

    Article  Google Scholar 

  4. B. Sreedhar, D. K. Chattopadhyay, M. S. H. Karunakar, and A. R. K. Sastry, J. Appl. Polym. Sci., 101, 25 (2006).

    Article  CAS  Google Scholar 

  5. R. F. T. Stepto, Macromol. Symp., 201, 203 (2003).

    Article  CAS  Google Scholar 

  6. A. P. Mathew and A. Dufresne, Biomacromolecules, 3, 1101 (2002).

    Article  CAS  Google Scholar 

  7. A. J. F. Carvalho, M. D. Zambon, A. A. S. Curvelo, and A. Gandini, Carbohydr. Polym., 62, 387 (2005).

    Article  CAS  Google Scholar 

  8. D. S. Chaudhary and B. P. Adhikari, J. Appl. Polym. Sci., 115, 2703 (2010).

    Article  CAS  Google Scholar 

  9. P. Thybo, L. Hovgaard, J. S. Lindelov, A. Brask, and S. K. Anderson, Pharm. Res., 25, 1610 (2008).

    Article  CAS  Google Scholar 

  10. J. G. Yu, N. Wang, and X. F. Ma, Starch-Starke, 57, 494 (2005).

    Article  CAS  Google Scholar 

  11. X. Xie and Q. Liu, Starch-Starke, 56, 364 (2004).

    Article  CAS  Google Scholar 

  12. M. G. A. Vieira, M. A. Da Silva, L. O. Santos, and M. M. Beppu, Eur. Polym. J., 47, 254 (2011).

    Article  CAS  Google Scholar 

  13. R. Bodirlau, C. A. Teaca, and I. Spiridon, Compos. Pt. BEng., 44, 575 (2013).

    Article  CAS  Google Scholar 

  14. J. Toneli, K. Park, A. Negreiros, and F. Murr, Drying Technol., 28, 369 (2010).

    Article  CAS  Google Scholar 

  15. A. A. A. Soliman, A. Nabila, El-Shinnaway, and F. Mobarak, Thermochim. Acta, 296, 149 (1997).

    Article  CAS  Google Scholar 

  16. S. Zhang, Y. Zhang, X. Wang, and Y. Z. Wang, Stach-Starke, 61, 646 (2009).

    Article  CAS  Google Scholar 

  17. M. J. Hanus and T. A. G. Langrish, J. Zhejiang. Uni. Sci. A, 8, 1762 (2007).

    Article  Google Scholar 

  18. X. F. Ma, J. G. Yu, and J. J. Wan, Carbohydr. Polym., 64, 267 (2006).

    Article  CAS  Google Scholar 

  19. E. M. Teixeira, A. L. Da Roz, A. J. F. Carvalho, and A. A. S. Curvelo, Carbohydr. Polym., 69, 619 (2007).

    Article  CAS  Google Scholar 

  20. J. J. G. van Soest, S. H. D. Hullmen, D. de Wit, and J. F. G. Vliegenthart, Carbohydr. Polym., 29, 225 (1996).

    Article  Google Scholar 

  21. X. F. Ma, F. Xie, L. Yu, L. Chen, and D. Li, Carbohydr. Polym., 76, 291 (2009).

    Article  Google Scholar 

  22. M. B. K. Niazi, Ph. D. Dissertation, Univeristy of Groningen, 2013.

    Google Scholar 

  23. M. F. Cervera, J. Heinamaki, N. de la Paz, O. Lopez, S. L. Maunu, T. Virtanen, T. Hatanpaa, N. Antikainen, J. Fundora, and J. Yliruusi, AAPS Pharm. Sci. Technol., 12, 637 (2011).

    Article  CAS  Google Scholar 

  24. A. Billion, M. Petit, M. B. Doko, B. Bataille, and M. Jacob, Drug Dev. Ind. Pharm., 25, 1149 (1999).

    Article  Google Scholar 

  25. N. Reddy and Y. Yang, Food Chem., 118, 702 (2010).

    Article  CAS  Google Scholar 

  26. R. Bodirlau, C. Teaca, I. Spiridon, and N. Tudorachi, Monatshefte Fur Chemie, 143, 335 (2012).

    Article  CAS  Google Scholar 

  27. L. T. Sin, W. A. W. A. Rahman, A. R. Rahmat, and A. A. Samad, Polymer, 51, 1206 (2010).

    Article  CAS  Google Scholar 

  28. Y. Zhang and J. H. Han, J. Food Sci., 71, E253 (2006).

    Article  CAS  Google Scholar 

  29. J. J. G. van Soest, H. Tournois, D. de Wit, and J. F. G. Vliegenthart, Carbohydr. Res., 279, 201 (1995).

    Article  Google Scholar 

  30. R. Shi, J. Bi, Z. Zhang, A. Zhu, D. Chen, X. Zhou, L. Zhang, and W. Tian, Carbohydr. Polym., 74, 763 (2008).

    Article  CAS  Google Scholar 

  31. S. Keshani, W. R. W. Daud, M. Nourouzi, F. Namver, and M. Ghasemi, J. Food Eng., 146, 152 (2015).

    Article  Google Scholar 

  32. A. M. Goula and K. G. Adamopoulos, Innovative Food Sci. Emerg. Technol., 11, 342 (2010).

    Article  CAS  Google Scholar 

  33. B. R. Bhandari and T. Howes, J. Food Eng., 40, 71 (1999).

    Article  Google Scholar 

  34. L. E. Kurozawa, A. G. Morassi, A. A. Vanzo, K. J. Park, and M. D. Hubinger, Drying Technol., 27, 1248 (2009).

    Article  CAS  Google Scholar 

  35. M. Xiaofei and J. Yu, Stach-Starke, 56, 545 (2004).

    Article  Google Scholar 

  36. M. Xiaofei, Y. Juigao, and F. Jin, Polym. Int., 53, 1780 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Bilal Khan Niazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, B., Niazi, M.B.K., Hussain, A. et al. Influence of carboxylic acids on mechanical properties of thermoplastic starch by spray drying. Fibers Polym 18, 64–73 (2017). https://doi.org/10.1007/s12221-017-6769-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-6769-8

Keywords

Navigation