Skip to main content
Log in

Polypropylene/high-density polyethylene/carbon fiber composites: Manufacturing techniques, mechanical properties, and electromagnetic interference shielding effectiveness

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This study uses polypropylene (PP)/high-density polyethylene (HDPE) polyblends (80/20 wt.%) as matrices, which are then melt-blended with inorganic carbon fibers (CF) as reinforcement to form electrically conductive PP/HDPE composites. Tensile test, flexural test, Izod impact test, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) are performed to evaluate different physical properties of samples. A surface resistance and electromagnetic interference shielding effectiveness (EMI SE) measurements are used to evaluate the electrical properties of the PP/HDPE/CF composites. Test results show that an increasing content of carbon fibers results in an 18 %, 23 %, and 60 % higher tensile strength, flexural strength, and impact strength, respectively. SEM results show that carbon fibers break as a result of applied force, thereby bearing the force and increasing the mechanical properties of composites. DSC and XRD results show that the addition of carbon fibers causes heterogeneous nucleation in PP/HDPE polyblends, thereby increasing crystallization temperature. However, the crystalline structure of PP/HDPE composites is not affected. Surface resistivity results show that 5 wt.% of carbon fibers can form a conductive network in PP/HDPE polyblends and reduce the surface resistivity from 12×1012 ohm/sq to 4×103 ohm/sq. EMI SE results show that, with a 20 wt.% CF and a frequency of 2-3 GHz, the average EMI SE of PP/HDPE/CF composites is between -48 and -52 dB, qualifying their use for EMI SE, which is required for standard electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Eswaraiah, V. Sankaranarayanan, and S. Ramaprabhu, Macromol. Mater. Eng., 296, 894 (2011).

    Article  CAS  Google Scholar 

  2. S. T. Hsiao, C. C. Ma, H. W. Tien, W. H. Liao, Y. S. Wang, and S. M. Li, Carbon, 60, 57 (2013).

    Article  CAS  Google Scholar 

  3. M. Ignatenko and M. Tanaka, Physica B, 405, 352 (2010).

    Article  CAS  Google Scholar 

  4. S. W. Kim, Y. W. Yoon, S. J. Lee, G. Y. Kim, Y. B. Kim, and Y. Y. Chun, J. Magn. Magn. Mater., 316, 472 (2007).

    Article  CAS  Google Scholar 

  5. Y. Dai, M. Sun, C. Liu, and Z. Li, Cement Concrete Compos., 32, 508 (2010).

    Article  CAS  Google Scholar 

  6. S. Bandini and M. Magagnini, Parallel Comput., 27, 643 (2001).

    Article  Google Scholar 

  7. J. Cao and D. D. L. Chung, Cement Concrete Compos., 33, 1737 (2003).

    Article  CAS  Google Scholar 

  8. V. Panwar, B. Kang, J. O. Park, S. Park, and R. M. Mehra, Eur. Polym. J., 45, 1777 (2009).

    Article  CAS  Google Scholar 

  9. K. H. Wong, S. J. Pickering, and C. D. Rudd, Compos. Pt. A-Appl. Sci. Manuf., 41, 693 (2010).

    Article  Google Scholar 

  10. W. J. Lee, J. W. Lee, and C. G. Kim, Compos. Sci. Technol., 68, 2485 (2008).

    Article  CAS  Google Scholar 

  11. Z. Li, G. Luo, F. Wei, and Y. Huang, Compos. Sci. Technol., 66, 1022 (2006).

    Article  CAS  Google Scholar 

  12. J. Meredith, S. C. Cazuc, E. Collings, S. Carter, S. Alsop, and J. Lever, Compos. Sci. Technol., 72, 688 (2012).

    Article  CAS  Google Scholar 

  13. K. H. Wong, D. S. Mohammed, S. J. Pickering, and R. Brooks, Compos. Sci. Technol., 72, 835 (2012).

    Article  CAS  Google Scholar 

  14. M. H. Akonda, C. A. Lawrence, and B. M. Weager, Compos. Pt. A-Appl. Sci. Manuf., 43, 79 (2012).

    Article  Google Scholar 

  15. A. Ameli, P. U. Jung, and C. B. Park, Compos. Sci. Technol., 76, 37 (2013).

    Article  CAS  Google Scholar 

  16. A. Ameli, P. U. Jung, and C. B. Park, Carbon, 60, 379 (2013).

    Article  CAS  Google Scholar 

  17. I. Taketa, J. Ustarroz, L. Gorbatikh, S. V. Lomov, and I. Verpoest, Compos. Pt. A-Appl. Sci. Manuf., 41, 927 (2010).

    Article  Google Scholar 

  18. F. Rezaei, R. Yunus, and N. A. Ibrahim, Mater. Des., 30, 260 (2009).

    Article  CAS  Google Scholar 

  19. L. Shen, F. Q. Wang, H. Yang, and Q. R. Meng, Polym. Test., 30, 442 (2011).

    Article  CAS  Google Scholar 

  20. S. Yang, K. Lozano, A. Lomeli, H. D. Foltz, and R. Jones, Compos. Pt. A-Appl. Sci. Manuf., 36, 691 (2005).

    Article  Google Scholar 

  21. M. H. Al-Saleh and U. Sundararaj, Carbon, 47, 1738 (2009).

    Article  CAS  Google Scholar 

  22. M. H. Al-Saleh, G. A. Gelves, and U. Sundararaj, Mater. Des., 52, 128 (2013).

    Article  CAS  Google Scholar 

  23. Z. Xu, T. Yang, M. Nakamura, Y. Yang, and H. Hamada, Energy Procedia, 89, 15 (2016).

    Article  CAS  Google Scholar 

  24. H. C. Chen, K. C. Lee, J. H. Lin, and M. Koch, J. Mater. Process Technol., 184, 124 (2007).

    Article  CAS  Google Scholar 

  25. M. Arroyo, M. A. Lopez-Manchado, and F. Avalos, Polymer, 38, 5587 (1997).

    Article  CAS  Google Scholar 

  26. A. Ajji, P. Sammut, and M. A. Huneault, J. Appl. Polym. Sci., 88, 3070 (2003).

    Article  CAS  Google Scholar 

  27. T. W. Więckowski and J. M. Janukiewicz, Fibers Text East Eur., 5, 59 (2006).

    Google Scholar 

  28. C. W. Lin, C. W. Lou, C. H. Huang, C. L. Huang, and J. H. Lin, J. Thermoplast. Compos., 27, 1451 (2014).

    Article  CAS  Google Scholar 

  29. J. S. Kim, H. J. An, K. Y. Kim, W. Y. Jeong, N. H. Park, and D. Y. Lim, Fiber. Polym., 14, 2128 (2014).

    Article  Google Scholar 

  30. H. J. Zo, S. H. Joo, T. Kim, P. S. Seo, J. H. Kim, and J. S. Park, Fiber. Polym., 15, 1071 (2014).

    Article  CAS  Google Scholar 

  31. H. J. An, J. S. Kim, K. Y. Kim, D. Y. Lim, and D. H. Kim, Fiber. Polym., 15, 2355 (2014).

    Article  CAS  Google Scholar 

  32. C. W. Lin and J. H. Lin, J. Ind. Text., 43, 191 (2013).

    Article  CAS  Google Scholar 

  33. A. P. Plochocki, S. S. Dagli, and R. D. Andrews, Polym. Eng. Sci., 30, 741 (1990).

    Article  CAS  Google Scholar 

  34. A. Chatterjee and B. L. Deopura, Fiber. Polym., 4, 102 (2003).

    Article  CAS  Google Scholar 

  35. J. Wang, C. Xiang, Q. Liu, Y. Pan, and J. Guo, Adv. Funct. Mater., 18, 2995 (2008).

    Article  CAS  Google Scholar 

  36. T. Nishino, T. Matsumoto, and K. Nakamae, Polym. Eng. Sci., 40, 336 (2000).

    Article  CAS  Google Scholar 

  37. W. Li, L. Liu, and B. Shen, Fiber. Polym., 14, 1515 (2013).

    Article  CAS  Google Scholar 

  38. C. W. Lin, Z. Y. Lin, C. W. Lou, T. L. Kuo, and J. H. Lin, J. Thermoplast. Compos., 28, 1047 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Horng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, CT., Pan, YJ. & Lin, JH. Polypropylene/high-density polyethylene/carbon fiber composites: Manufacturing techniques, mechanical properties, and electromagnetic interference shielding effectiveness. Fibers Polym 18, 155–161 (2017). https://doi.org/10.1007/s12221-017-6371-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-6371-0

Keywords

Navigation