Skip to main content
Log in

Optimization of elecrospinning process of zein using central composite design

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Biodegradable edible sub-micron electrospun zein fibers were prepared using acetic acid as solvent. The solution concentration at three levels: 22, 26 and 30 w/v %, the electrospinning voltage at three levels: 10, 20 and 30 kV, the solution flow rate at three levels: 4, 8 and 12 ml/h and the distance between needle tip and collector at three levels: 10, 15 and 20 cm were studied. Central composite design (CCD) was utilized to modeling the effect of electrospinning parameters of zein solution on average fiber diameters and the data were analyzed using response surface methodology (RSM). Coefficient of determination, R2, of fitted regression model was higher than 0.9 for response. The analysis of variance table showed that the lack of fit was not significant for response surface model at 95 %. Therefore, the model for response variable was highly adequate. Results also indicated that the solution concentration had significant influence (P<0.0001) on morphology and diameter of fibers. By increasing the solution concentration, uniform and bead-free fibers were obtained. As the solution concentration was increased, the average fiber diameters were also increased. Furthermore, the electrospinning voltage had significant effect (P<0.0001) on average fiber diameters. By increasing the electrospinning voltage, the average fiber diameters increased. The solution flow rate and the distance between needle tip and collector had no significant influence on the average fiber diameters. According to model optimization, the minimum average fiber diameter of electrospun zein fiber is given by following conditions: 24 w/v % zein concentration, 10 kV of the applied voltage, 10 cm of needle tip to collector distance, and 4 ml/h of solution flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Shukla and M. Cheryan, Ind. Crop. Prod., 13, 171 (2001).

    Article  CAS  Google Scholar 

  2. Y. P. Neo, Ph. D. Dissertation, UOA, New Zealand, 2013.

    Google Scholar 

  3. S. Torres-Giner, E. Gimenez, and J. M. Lagaron, Food. Hydrocolloid., 22, 601 (2008).

    Article  CAS  Google Scholar 

  4. W. Huang, T. Zou, S. Li, J. Jing, X. Xia, and X. Liu, Aaps. Pharmscitech., 14, 675 (2013).

    Article  CAS  Google Scholar 

  5. N. Bhardwaj and S. C. Kundu, Biotechnol. Adv., 28, 325 (2010).

    Article  CAS  Google Scholar 

  6. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).

    Article  CAS  Google Scholar 

  7. S. Alborzi, Ph. D. Dissertation, UOA, Ontario, 2012.

    Google Scholar 

  8. C. J. Angammana, Ph. D. Dissertation, UW, Ontario, 2011.

    Google Scholar 

  9. B. Ghorani and N. Tucker, Food. Hydrocolloid., 51, 227 (2015).

    Article  CAS  Google Scholar 

  10. C. A. Fuenmayor, E. Mascheroni, M. S. Cosio, L. Piergiovanni, S. Benedetti, M. Ortenzi, A. Schiraldi, and S. Mannino, Chem. Eng. Trans., 32, 1771 (2013).

    Google Scholar 

  11. Y. Li, L. T. Lim, and Y. Kakuda, J. Food. Sci., 74, C233 (2009).

    Article  CAS  Google Scholar 

  12. S. Agarwal, J. H. Wendorff, and A. Greiner, Polymer, 49, 5603 (2008).

    Article  CAS  Google Scholar 

  13. E. R. Kenawy, F. I. Abdel-Hay, M. H. El-Newehy, and G. E. Wnek, Mater. Chem. Phys., 113, 296 (2009).

    Article  CAS  Google Scholar 

  14. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002).

    Article  CAS  Google Scholar 

  15. C. Kriegel, A. Arrechi, K. Kit, D. J. McClements, and J. Weiss, Crit. Rev. Food. Sci., 48, 775 (2008).

    Article  CAS  Google Scholar 

  16. N. Sozer and J. L. Kokini, Trends. Biotechnol., 27, 82 (2009).

    Article  CAS  Google Scholar 

  17. A. López-Rubio and J. M. Lagaron, Innov. Food. Sci. Emerg., 13, 200 (2012).

    Article  Google Scholar 

  18. S. Wongsasulak, M. Patapeejumruswong, J. Weiss, P. Supaphol, and T. Yoovidhya, J. Food Eng., 98, 370 (2010).

    Article  CAS  Google Scholar 

  19. G. W. Selling, A. Biswas, A. Patel, D. J. Walls, C. Dunlap, and Y. Wei, Macromol. Chem. Phys., 208, 1002 (2007).

    Article  CAS  Google Scholar 

  20. Y. Wang and L. Chen, Macromol. Mater. Eng., 297, 902 (2012).

    Article  CAS  Google Scholar 

  21. T. Miyoshi, K. Toyohara, and H. Minematsu, Polym. Int., 54, 1187 (2005).

    Article  CAS  Google Scholar 

  22. C. Yao, X. Li, and T. Song, J. Appl. Polym. Sci., 103, 380 (2007).

    Article  CAS  Google Scholar 

  23. S. Ramakrishna, K. Fujihara, W.-E. Teo, T.-C. Lim, and Z. Ma, “An Introduction to Electrospinning and Nanofibers”, 1st ed., pp.92–114, World Scientific Publishing Co. Pte. Ltd., Singapore, 2005.

    Book  Google Scholar 

  24. S. Koombhongse, W. Liu, and D. H. Reneker, J. Polym. Sci. Pol. Phys., 39, 2598 (2001).

    Article  CAS  Google Scholar 

  25. H. Jiang, P. Zhao, and K. Zhu, Macromol. Biosci., 7, 517 (2007).

    Article  CAS  Google Scholar 

  26. M. K. M. Essalhi, C. Cojocaru, M. C. García-Payo, and P. Arribas, Tonanoj, 7, 8 (2013).

    Article  CAS  Google Scholar 

  27. V. Beachley and X. Wen, Mat. Sci. Eng. C-Mater., 3, 663 (2011).

    Google Scholar 

  28. S. H. Tan, R. Inai, M. Kotaki, and S. Ramakrishna, Polymer, 46, 6128 (2005).

    Article  CAS  Google Scholar 

  29. J. S. Lee, K. H. Choi, H. D. Ghim, S. S. Kim, D. H. Chun, H. Y. Kim, and W. S. Lyoo, J. Appl. Polym. Sci., 93, 1638 (2004).

    Article  CAS  Google Scholar 

  30. M. Hasanzadeh, B. Hadavi Moghadam, M. H. Moghadam Abatari, and A. K. Haghi, Bulg. Chem. Commun., 45, 178 (2013).

    CAS  Google Scholar 

  31. C. Zhang, X. Yuan, L. Wu, Y. Han, and J. Sheng, Eur. Polym. J., 41, 423 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad B. Habibi Najafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miri, M.A., Movaffagh, J., Najafi, M.B.H. et al. Optimization of elecrospinning process of zein using central composite design. Fibers Polym 17, 769–777 (2016). https://doi.org/10.1007/s12221-016-6064-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-6064-0

Keywords

Navigation