Skip to main content
Log in

Effect of hot-stretching on morphology and mechanical properties of electrospun PMIA nanofibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Well-aligned PMIA nanofiber mats were fabricated by electrospinning and then hot-stretching along the fiber axis was used to improve the mechanical properties of nanofibers in this paper. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) were used to characterize the morphology and properties of nanofibers. The results showed that the nanofibers became thinner and better alignment than the as-spun nanofibers after hotstretching, and the average diameter of the nanofibers decreased with the increasing of the tensile force. In the same time, hotstretching improved the crystallinity and T g of the as-spun PMIA nanofibers. The tensile strength and modulus of the hotstretched nanofiber mats peaked at ca.50 % and ca.196 % respectively at the tensile force of 12 N compared with the as-spun nanofiber mats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Frenot and I. S. Chronakis, Curr. Opin. Colloid. In., 8, 64 (2003).

    Article  CAS  Google Scholar 

  2. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).

    Article  CAS  Google Scholar 

  3. D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004).

    Article  CAS  Google Scholar 

  4. D. H. Reneker, A. L. Yarin, E. Zussman, and H. Xu, Adv. Appl. Mech., 41, 43 (2007).

    Article  Google Scholar 

  5. S. Agarwal, J. H. Wendorff, and A. Greiner, Polymer, 49, 5603 (2008).

    Article  CAS  Google Scholar 

  6. A. Baji, Y. W. Mai, S. C. Wong, M. Abtahi, and P. Chen, Compos. Sci. Technol., 70, 703 (2010).

    Article  CAS  Google Scholar 

  7. D. Yu, J. Yang, L. Li, P. Lu, and L. Zhu, Fiber. Polym., 13, 450 (2012).

    Article  CAS  Google Scholar 

  8. T. J. Shin, S. Y. Park, H. J. Kim, H. J. Lee, and J. H. Youk, Biotechnol. Lett., 32, 877 (2010).

    Article  CAS  Google Scholar 

  9. Y. Liu, J. Li, and Z. Pan, J. Polym. Res., 18, 2055 (2011).

    Article  CAS  Google Scholar 

  10. N. Bhardwaj and S. C. Kundu, Biotechnol. Adv., 28, 325 (2010).

    Article  CAS  Google Scholar 

  11. L. Q. Liu, D. Tasis, M. Prato, and H. D. Wagner, Adv. Mater., 19, 1228 (2007).

    Article  CAS  Google Scholar 

  12. W. Sun, Q. Cai, P. Li, X. Deng, Y. Wei, M. M. Xu, and X. Yang, Dental. Materials., 26, 873 (2010).

    Article  CAS  Google Scholar 

  13. R. Jalili, M. Morshed, and S. A. H. Ravandi, J. Appl. Polym. Sci., 101, 4350 (2006).

    Article  CAS  Google Scholar 

  14. X. H. Zong, S. F. Ran, D. F. Fang, B. S. Hsiao, and B. Chu, Polymer, 44, 4959 (2003).

    Article  CAS  Google Scholar 

  15. S. Asano, A. Ohmory, A. Akiyama, M. Osawa, K. Shizuka, and M. Kouno, U. S. Patent, 4758649 (1988).

  16. N. N. Machalaba and K. E. Perepelkin, J. Ind. Text., 31, 189 (2002).

    CAS  Google Scholar 

  17. Y. J. Wu, J. C. Seferis, and V. Lorentz, J. Appl. Polym. Sci., 86, 1149 (2002).

    Article  CAS  Google Scholar 

  18. L. Yao, C. Lee, and J. Kim, Fiber. Polym., 11, 1032 (2010).

    Article  CAS  Google Scholar 

  19. L. Yao and J. Kim, Adv. Mater. Res., 175-176, 318 (2011).

    Article  CAS  Google Scholar 

  20. X. Wang, K. Zhang, M. Zhu, H. Yu, Z. Zhou, Y. Chen, and B. S. Hsiao, Polymer, 49, 2755 (2008).

    Article  CAS  Google Scholar 

  21. C. Lai, G. Zhong, Z. Yue, L. Zhang, A. Vakili, Y. Wang, L. Zhu, J. Liu, and H. Fong, Polymer, 5, 519 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijuan Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, B., Tian, L., Li, J. et al. Effect of hot-stretching on morphology and mechanical properties of electrospun PMIA nanofibers. Fibers Polym 14, 405–408 (2013). https://doi.org/10.1007/s12221-013-0405-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-0405-z

Keywords

Navigation