Skip to main content

Advertisement

Log in

Improved Bounds for Hermite–Hadamard Inequalities in Higher Dimensions

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \(\Omega \subset {\mathbb {R}}^n\) be a convex domain and let \(f:\Omega \rightarrow {\mathbb {R}}\) be a positive, subharmonic function (i.e., \(\Delta f \ge 0\)). Then

$$\begin{aligned} \frac{1}{|\Omega |} \int _{\Omega }{f \mathrm{{d}}x} \le \frac{c_n}{ |\partial \Omega | } \int _{\partial \Omega }{ f \mathrm{{d}}\sigma }, \end{aligned}$$

where \(c_n \le 2n^{3/2}\). This inequality was previously only known for convex functions with a much larger constant. We also show that the optimal constant satisfies \(c_n \ge n-1\). As a byproduct, we establish a sharp geometric inequality for two convex domains where one contains the other \( \Omega _2 \subset \Omega _1 \subset {\mathbb {R}}^n\):

$$\begin{aligned} \frac{|\partial \Omega _1|}{|\Omega _1|} \frac{| \Omega _2|}{|\partial \Omega _2|} \le n. \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alter, F., Caselles, V.: Uniqueness of the Cheeger set of a convex body. Nonlinear Anal. 70(1), 32–44 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bessenyei, M.: The Hermite-Hadamard inequality on simplices. Am. Math. Month. 115(4), 339–345 (2008)

    Article  MathSciNet  Google Scholar 

  3. Chen, Y.: Hadamard’s inequality on a triangle and on a polygon. Tamkang J. Math. 35(3), 247–254 (2004)

    Article  MathSciNet  Google Scholar 

  4. de la Cal, J., Carcamo, J.: Multidimensional Hermite-Hadamard inequalities and the convex order. J. Math. Anal. Appl. 324(1), 248–261 (2006)

    Article  MathSciNet  Google Scholar 

  5. de la Cal, J., Carcamo, J., Escauriaza, L.: A general multidimensional Hermite-Hadamard type inequality. J. Math. Anal. Appl. 356(2), 659–663 (2009)

    Article  MathSciNet  Google Scholar 

  6. Dragomir, S.S.: On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 5(4), 775–788 (2001)

    Article  MathSciNet  Google Scholar 

  7. Dragomir, S., Pearce, C.: Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs (2000)

  8. Dragomir, S., Keady, G.: A Hadamard-Jensen inequality and an application to the elastic torsion problem. Appl. Anal. 75(3–4), 285–295 (2000)

    Article  MathSciNet  Google Scholar 

  9. Hadamard, J.: Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. de Math. Pures et Appl. 58, 171–215 (1893)

    MATH  Google Scholar 

  10. Hermite, C.: Sur deux limites d’une integrale define. Mathesis 3, 82 (1883)

    Google Scholar 

  11. Kawohl, B., Lachand-Robert, T.: Characterization of Cheeger sets for convex subsets of the plane. Pac. J. Math. 225(1), 103–118 (2006)

    Article  MathSciNet  Google Scholar 

  12. Larson, S.: A bound for the perimeter of inner parallel bodies. J. Funct. Anal. 271(3), 610–619 (2016)

    Article  MathSciNet  Google Scholar 

  13. Larson, S.: Asymptotic shape optimization for Riesz means of the Dirichlet Laplacian over convex domains. J. Spectr. Theory, to appear

  14. Lu, J., Steinerberger, S.: A Dimension-Free Hermite-Hadamard Inequality via Gradient Estimates for the Torsion Function. arXiv:1905.03216

  15. Mihailescu, M., Niculescu, C.: An extension of the Hermite-Hadamard inequality through subharmonic functions. Glasg. Math. J. 49(3), 509–514 (2007)

    Article  MathSciNet  Google Scholar 

  16. Niculescu, C.: The Hermite-Hadamard inequality for convex functions of a vector variable. Math. Inequal. Appl. 5(4), 619–623 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Niculescu, C., Persson, L.-E.: Old and new on the Hermite-Hadamard inequality. Real Anal. Exchange 29, 663–686 (2003–2004)

  18. Pasteczka, P.: Jensen-type Geometric Shapes. arXiv:1804.03688

  19. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and Its Applications, vol. 151. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  20. Sperb, R.: Maximum Principles and Their Applications, Mathematics in Science and Engineering, vol. 157. Academic Press, New York (1981)

    MATH  Google Scholar 

  21. Steinerberger, S.: The Hermite-Hadamard inequality in higher dimension. J. Geometr. Anal., to appear

  22. Steinhagen, P.: Uber die grosste Kugel in einer konvexen Punktmenge. Abh. Math. Semin. Univ. Hambg. 1(1), 15–26 (1922)

    Article  MathSciNet  Google Scholar 

  23. Talenti, G.: Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 3(4), 697–718 (1976)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was initiated at the workshop ‘Shape Optimization with Surface Interactions’ at the American Institute of Mathematics in June 2019. The authors are grateful to the organizers of the workshop as well as the Institute. KB’s research was supported in part by Simons Foundation Grant 506732. JL’s research was supported in part by a Bucknell University Scholarly Development Grant. SL acknowledges financial support from Swedish Research Council Grant No. 2012-3864. SS’s research was supported in part by the NSF (DMS-1763179) and the Alfred P. Sloan foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Steinerberger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beck, T., Brandolini, B., Burdzy, K. et al. Improved Bounds for Hermite–Hadamard Inequalities in Higher Dimensions. J Geom Anal 31, 801–816 (2021). https://doi.org/10.1007/s12220-019-00300-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00300-5

Keywords

Mathematics Subject Classification

Navigation