Skip to main content
Log in

A New Family of Singular Integral Operators Whose \(L^2\)-Boundedness Implies Rectifiability

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \(E \subset {\mathbb {C}}\) be a Borel set such that \(0<{\mathcal {H}}^1(E)<\infty \). David and Léger proved that the Cauchy kernel 1 / z (and even its coordinate parts \(\mathrm{Re\,}z/|z|^2\) and \(\mathrm{Im\,}z/|z|^2, z\in {\mathbb {C}}{\setminus }\{0\}\)) has the following property: the \(L^2({\mathcal {H}}^1\lfloor E)\)-boundedness of the corresponding singular integral operator implies that E is rectifiable. Recently Chousionis, Mateu, Prat and Tolsa extended this result to any kernel of the form \((\mathrm{Re\,}z)^{2n-1}/|z|^{2n}, n\in {\mathbb {N}}\). In this paper, we prove that the above-mentioned property holds for operators associated with the much wider class of the kernels \((\mathrm{Re\,}z)^{2N-1}/|z|^{2N}+t\cdot (\mathrm{Re\,}z)^{2n-1}/|z|^{2n}\), where n and N are positive integer numbers such that \(N\geqslant n\), and \(t\in {\mathbb {R}}{\setminus } (t_1,t_2)\) with \(t_1,t_2\) depending only on n and N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Calderón, A.P.: Cauchy integrals on Lipschitz curves and related operators. Proc. Nat. Acad. Sci. USA 74, 1324–1327 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chousionis, V., Mateu, J., Prat, L., Tolsa, X.: Calderón–Zygmund kernels and rectifiability in the plane. Adv. Math. 231(1), 535–568 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chousionis, V., Prat, L.: Some Calderón-Zygmund kernels and their relation to rectifiability and Wolff capacities. Math. Z. 231(1–2), 435–460 (2016)

    Article  MATH  Google Scholar 

  4. Christ, M.: Lectures on Singular Integral Operators. Regional Conference Series in Mathematics, vol. 77. American Mathematical Society, Providence (1990)

  5. Chunaev, P., Mateu, J., Tolsa, X.: Singular integrals unsuitable for the curvature method whose \(L^2\)-boundedness still implies rectifiability, arXiv:1607.07663 (2016)

  6. Coifman, R., McIntosh, A., Meyer, Y.: L’intégrale de Cauchy définit un opérateur borné sur \(L^{2}\) pour les courbes lipschitziennes. Ann. Math. (2) 116(2), 361–387 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. David, G.: Opérateurs intégraux singuliers sur certaines courbes du plan complexe. Ann. Sci. École Norm. Sup. (4) 17(1), 157–189 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. David, G.: Unrectifiable 1-sets have vanishing analytic capacity. Rev. Mat. Iberoam. 14(2), 369–479 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. David, G., Semmes, S.: Analusis of and on Uniformly Rectifiable Sets. Surveys and Monographs, vol. 38. American Mathematical Society, Providence (1993)

  10. Jaye, B., Nazarov, F.: Three revolutions in the kernel are worse than one, arXiv:1307.3678 (2013)

  11. Huovinen, P.: A nicely behaved singular integral on a purely unrectifiable set. Proc. Am. Math. Soc. 129(11), 3345–3351 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Léger, J.C.: Menger curvature and rectifiability. Ann. Math. 149, 831–869 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  14. Mattila, P.: Singular integrals, analytic capacity and rectifiability, In: Proceedings of the conference dedicated to Professor Miguel de Guzmán (El Escorial, 1996), J. Fourier Anal. Appl. 3, Special Issue, 797–812 (1997)

  15. Mattila, P.: Singular integrals and rectifiability, In: Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), vol. Extra. Publicacions Matemàtiques, pp. 199–208 (2002)

  16. Mattila, P., Melnikov, M., Verdera, J.: The Cauchy integral, analytic capacity, and uniform rectifiability. Ann. Math. (2) 144(1), 127–136 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Melnikov, M.: Analytic capacity: a discrete approach and the curvature of measure, Mat. Sb. 186(6), 57–76 (1995) (in Russian); Translation in Sb. Math. 186(6), 827–846 (1995)

  18. Melnikov, M., Verdera, J.: A geometric proof of the \(L^2\) boundedness of the Cauchy integral on Lipschitz graphs. Int. Math. Res. Not. 7, 325–331 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series. Vol. 1. Elementary functions, vol. 1. Gordon and Breach Science Publishers, New York (1986)

    MATH  Google Scholar 

  20. Tolsa, X.: Painlevé’s problem and the semiadditivity of analytic capacity. Acta Math. 190(1), 105–149 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tolsa, X.: Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón-Zygmund Theory. Progress in Mathematics, vol. 307. Birkhäuser/Springer, Cham (2014)

Download references

Acknowledgements

I would like to express my sincere gratitude to Joan Mateu and Xavier Tolsa for suggesting the problem and for many stimulating conversations. I am also grateful to the Referee for his/her valuable recommendations. The research was supported by the ERC Grant 320501 of the European Research Council (FP7/2007-2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Chunaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chunaev, P. A New Family of Singular Integral Operators Whose \(L^2\)-Boundedness Implies Rectifiability. J Geom Anal 27, 2725–2757 (2017). https://doi.org/10.1007/s12220-017-9780-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9780-9

Keywords

Mathematics Subject Classification

Navigation