Skip to main content
Log in

Brascamp–Lieb-Type Inequalities on Weighted Riemannian Manifolds with Boundary

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

It is known that by dualizing the Bochner–Lichnerowicz–Weitzenböck formula, one obtains Poincaré-type inequalities on Riemannian manifolds equipped with a density, which satisfy the Bakry–Émery Curvature-Dimension condition (combining a lower bound on its generalized Ricci curvature and an upper bound on its generalized dimension). When the manifold has a boundary, an appropriate generalization of the Reilly formula may be used instead. By systematically dualizing this formula for various combinations of boundary conditions of the domain (convex, mean-convex) and the function (Neumann, Dirichlet), we obtain new Brascamp–Lieb-type inequalities on the manifold. All previously known inequalities of Lichnerowicz, Brascamp–Lieb, Bobkov–Ledoux, and Veysseire are recovered, extended to the Riemannian setting and generalized into a single unified formulation, and their appropriate versions in the presence of a boundary are obtained. Our framework allows to encompass the entire class of Borell’s convex measures, including heavy-tailed measures, and extends the latter class to weighted-manifolds having negative generalized dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes. In: Lectures on Probability Theory (Saint-Flour, 1992). Lecture Notes in Mathematics, vol. 1581, pp. 1–114. Springer, Berlin (1994)

  2. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84. Lecture Notes in Mathematics, vol. 1123, pp. 177–206. Springer, Berlin (1985)

  3. Barthe, F., Cordero-Erausquin, D.: Invariances in variance estimates. Proc. Lond. Math. Soc. (3) 106(1), 33–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bobkov, S.G., Ledoux, M.: Weighted Poincaré-type inequalities for Cauchy and other convex measures. Ann. Probab. 37(2), 403–427 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borell, C.: Convex set functions in \(d\)-space. Period. Math. Hung. 6(2), 111–136 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brascamp, H.J., Lieb, E.H.: On extensions of the Brunn–Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Func. Anal. 22(4), 366–389 (1976)

    Article  MATH  Google Scholar 

  7. Chavel, I.: Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics, vol. 115. Academic Press Inc., Orlando, FL (1984)

  8. Escobar, J.F.: Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate. Commun. Pure Appl. Math. 43(7), 857–883 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gallot, S.: Minorations sur le \(\lambda _{1}\) des variétés riemanniennes. In:Bourbaki Seminar, vol. 1980/1981. Lecture Notes in Mathematics, vol. 901, pp. 132–148. Springer, Berlin (1981)

  10. Gallot, S.: Inégalités isopérimétriques et analytiques sur les variétés riemanniennes. Astérisque, (163-164):31–91, On the geometry of differentiable manifolds (Rome, 1986) (1988)

  11. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer-Verlag, Berlin, Reprint of the 1998 edition (2001)

  12. Helffer, B.: Remarks on decay of correlations and Witten Laplacians, Brascamp-Lieb inequalities and semiclassical limit. J. Funct. Anal. 155(2), 571–586 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hörmander, L.: \(L^{2}\) estimates and existence theorems for the \(\bar{\partial }\) operator. Acta Math. 113, 89–152 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kennard, L., Wylie, W.: Positive weighted sectional curvature. arXiv:1410.1558 (2014)

  15. Klartag, B.: A Berry–Esseen type inequality for convex bodies with an unconditional basis. Probab. Theory Relat. Fields 45(1), 1–33 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klartag, B.: Poincaré inequalities and moment maps. Ann. Fac. Sci. Toulouse Math. 22(1), 1–41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Klartag, B.: Needle decompositions in Riemannian geometry. arXiv:1408.6322, to appear in Memoirs of the AMS (2014)

  18. Kolesnikov, A.V., Milman, E.: Riemannian metrics on convex sets with applications to Poincaré and log-Sobolev inequalities. arXiv:1510.02971, to appear in Calc. Var. & PDE (2015)

  19. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Translated from the Russian by Scripta Technica. Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York-London (1968)

  20. Ledoux, M.: Logarithmic Sobolev inequalities for unbounded spin systems revisited. In: Séminaire de Probabilités, XXXV. Lecture Notes in Mathematics, vol. 1755, pp. 167–194. Springer, Berlin (2001)

  21. Li, H., Wei, Y.: \(f\)-minimal surface and manifold with positive \(m\)-Bakry–Émery ricci curvature. J. Geom. Anal. 25, 421–435 (2015). doi:10.1007/s12220-013-9434-5

  22. Li, P., Yau, S.T.: Estimates of eigenvalues of a compact Riemannian manifold. In: Geometry of the Laplace Operator (Proceedings of the Symposium on Pure Mathematics, University of Hawaii, Honolulu, Hawaii, 1979), Proceedings of the Symposium on Pure Mathematics, vol. XXXVI, pp. 205–239. American Mathematical Society, Providence, RI (1980)

  23. Lichnerowicz, A.: Géométrie des groupes de transformations. III. Dunod, Paris, Travaux et Recherches Mathématiques (1958)

  24. Lichnerowicz, A.: Variétés riemanniennes à tenseur C non négatif. C. R. Acad. Sci. Paris Sér. A-B 271, A650–A653 (1970)

    MATH  Google Scholar 

  25. Lichnerowicz, A.: Variétés kählériennes à première classe de Chern non negative et variétés riemanniennes à courbure de Ricci généralisée non negative. J. Differ. Geom. 6, 47–94 (1971/1972)

  26. Lieberman, G.M.: Oblique Derivative Problems for Elliptic Equations. World Scientific Publishing Co. Pte. Ltd, Hackensack (2013)

    Book  MATH  Google Scholar 

  27. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ma, L., Du, S.-H.: Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians. C. R. Math. Acad. Sci. Paris 348(21–22), 1203–1206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Macdonald, A.: Stokes’ theorem. Real Anal. Exchange 27(2), 739–747 (2001/2002)

  30. Milman, E.: Isoperimetric and concentration inequalities - equivalence under curvature lower bound. Duke Math. J. 154(2), 207–239 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Milman, E.: Beyond traditional curvature-dimension I: new model spaces for isoperimetric and concentration inequalities in negative dimension. arXiv:1409.4109, to appear in Transactions of the American Mathematical Society (2014)

  32. Milman, E.: Harmonic measures on the sphere via curvature-dimension. arXiv:1505.04335, to appear in Annales de la Faculté des Sciences de Toulouse (2015)

  33. Milman, E.: Sharp isoperimetric inequalities and model spaces for the curvature-dimension-diameter condition. J. Eur. Math. Soc. 17(5), 1041–1078 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Milman, E., Rotem, L.: Complemented Brunn–Minkowski inequalities and isoperimetry for homogeneous and non-homogeneous measures. Adv. Math. 262, 867–908 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mitrea, M., Taylor, M.: Boundary layer methods for Lipschitz domains in Riemannian manifolds. J. Funct. Anal. 163(2), 181–251 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Morrey, Jr. C.B.: Multiple integrals in the calculus of variations. In: Classics in Mathematics. Springer-Verlag, Berlin, Reprint of the 1966 edition (2008)

  37. Nguyen, V.H.: Dimensional variance inequalities of Brascamp–Lieb type and a local approach to dimensional Prékopa’s theorem. J. Funct. Anal. 266(2), 931–955 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Obata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 14, 333–340 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ohta, S.-I.: \(({K},{N})\)-convexity and the curvature-dimension condition for negative \(n\). J. Geom. Anal. 26, 2067–2096 (2016). doi:10.1007/s12220-015-9619-1

  40. Ohta, S.-I., Takatsu, A.: Displacement convexity of generalized relative entropies. Adv. Math. 228(3), 1742–1787 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ohta, S.-I., Takatsu, A.: Displacement convexity of generalized relative entropies II. Commun. Anal. Geom. 21(4), 687–785 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Qian, Z.: A gradient estimate on a manifold with convex boundary. Proc. R. Soc. Edinb. Sect. A 127(1), 171–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Reilly, R.C.: Applications of the Hessian operator in a Riemannian manifold. Indiana Univ. Math. J. 26(3), 459–472 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sturm, K.-T.: On the geometry of metric measure spaces. I and II. Acta Math. 196(1), 65–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Taylor, M.E.: Partial Differential Equations I. Basic Theory. Applied Mathematical Sciences, vol. 115, 2nd edn. Springer, New York (2011)

  46. Taylor, M.E.: Partial Differential Equations II. Qualitative Studies of Linear Equations. Applied Mathematical Sciences, vol. 116, 2nd edn. Springer, New York (2011)

  47. Veysseire, L.: A harmonic mean bound for the spectral gap of the Laplacian on Riemannian manifolds. C. R. Math. Acad. Sci. Paris 348(23–24), 1319–1322 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, F.-Y.: Semigroup properties for the second fundamental form. Doc. Math. 15, 527–543 (2010)

    MathSciNet  MATH  Google Scholar 

  49. Wang, F.-Y., Yan, L.: Gradient estimate on convex domains and applications. Proc. Am. Math. Soc. 141(3), 1067–1081 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wylie, W.: Sectional curvature for Riemannian manifolds with density. Geom. Dedicata. 178, 151–169 (2015). doi:10.1007/s10711-015-0050-3

  51. Xia, C.: The first nonzero eigenvalue for manifolds with Ricci curvature having positive lower bound. In: Chinese Mathematics into the 21st Century (Tianjin, 1988), pp. 243–249. Peking University Press, Beijing (1991)

  52. Yau, S.T.: Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold. Ann. Sci. École Norm. Sup. (4) 8(4), 487–507 (1975)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Franck Barthe, Bo Berndtsson, Andrea Colesanti, Dario Cordero-Erausquin, Bo’az Klartag, Michel Ledoux, Frank Morgan, Van Hoang Nguyen, Shin-ichi Ohta, Yehuda Pinchover and Steve Zelditch for their comments and interest. We also thank the anonymous referees for carefully reading the paper. Alexander V. Kolesnikov was supported by RFBR project 14-01-00237 and the DFG Project RO 1195/12-1. This study (research Grant No. 14-01-0056) was supported by The National Research University—Higher School of Economics’ Academic Fund Program in 2014/2015. Emanuel Milman was supported by ISF (Grant No. 900/10), BSF (Grant No. 2010288) and Marie-Curie Actions (Grant No. PCIG10-GA-2011-304066). The research leading to these results is part of a project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 637851).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Milman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, A.V., Milman, E. Brascamp–Lieb-Type Inequalities on Weighted Riemannian Manifolds with Boundary. J Geom Anal 27, 1680–1702 (2017). https://doi.org/10.1007/s12220-016-9736-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-016-9736-5

Keywords

Mathematics Subject Classification

Navigation