Skip to main content
Log in

The Mazurkiewicz Distance and Sets that are Finitely Connected at the Boundary

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study local connectedness, local accessibility and finite connectedness at the boundary, in relation to the compactness of the Mazurkiewicz completion of a bounded domain in a metric space. For countably connected planar domains we obtain a complete characterization. It is also shown exactly which parts of this characterization fail in higher dimensions and in metric spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamowicz, T., Björn, A., Björn, J., Shanmugalingam, N.: Prime ends for domains in metric spaces. Adv. Math. 238, 459–505 (2013)

  2. Aikawa, H., Hirata, K.: Doubling conditions for harmonic measure in John domains. Ann. Inst. Fourier (Grenoble) 58, 429–445 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, vol. 17. European Mathematical Society, Zurich (2011)

    Book  MATH  Google Scholar 

  4. Björn, A., Björn, J., Shanmugalingam, N.: The Dirichlet problem for \(p\)-harmonic functions on metric spaces. J. Reine Angew. Math. 556, 173–203 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Björn, A., Björn, J., Shanmugalingam, N.: The Perron method for \(p\)-harmonic functions. J. Differ. Equ. 195, 398–429 (2003)

    Article  MATH  Google Scholar 

  6. Björn, A., Björn, J., Shanmugalingam, N.: The Dirichlet Problem for \(p\)-Harmonic Functions with Respect to the Mazurkiewicz boundary. Preprint (2013) arXiv:1302.3887

  7. Bridson, M., Haefliger, A.: Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen Wissenschaften vol. 319. Springer, Berlin (1999)

  8. Fedorchuk, V. V. The fundamentals of dimension theory. In: General Topology I (Arkhangel’skiĭ., A. V., Pontryagin, L. S., eds.), Encyclopedia of Mathematical Sciences 17, pp. 111–224. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (1988) (Russian). English transl.: pp. 91–192. Springer, Berlin (1990)

  9. Freeman, D.M., Herron, D.A.: Bilipschitz homogeneity and inner diameter distance. J. Anal. Math. 111, 1–46 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Granlund, S., Lindqvist, P., Martio, O.: Note on the PWB-method in the nonlinear case Pacific. J. Math. 125, 381–395 (1986)

    MathSciNet  MATH  Google Scholar 

  11. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations, 2nd edn. Dover, Mineola (2006)

    MATH  Google Scholar 

  12. Herron, D.A., Sullivan, T.S.: Fractal inner chordarc disks. J. Anal. Math. 84, 173–205 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hocking, J.G., Young, G.S.: Topology. Dover, New York (1988)

    MATH  Google Scholar 

  14. Janiszewski, Z.: 0 rozcinaniu płaszczyzny przez kontinua [On separating the plane by continua]. Prace Mat.-Fiz. 26, 11–63 (Polish) (1915). http://matwbn.icm.edu.pl/index.php?jez=en

  15. Karmazin, A. P.: Quasiisometries, the Theory of Prime Ends and Metric Structures on Domains. Surgut (2008) (Russian)

  16. Kilpeläinen, T.: Potential theory for supersolutions of degenerate elliptic equations. Indiana Univ. Math. J. 38, 253–275 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuratowski, K.: Topology, vol. 2. Academic Press, New York (1968)

    Google Scholar 

  18. Mazurkiewicz, S.: Sur une classification de points situés un sur continu arbitraire [O pewnej klasyfikacyi punktów leża̧cych na kontynuach dowolnych]. C. R. Soc. Sci. Lett. Varsovie 9(5), 428–442 (1916) (Polish with French summary at the end)

  19. Moore, R.L.: A connected and regular point set which contains no arc. Bull. Am. Math. Soc. 32, 331–332 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moore, R.L.: Foundations of Point Set Theory, 2nd edn. American Mathematical Society, Providence (1962)

  21. Munkres, J.R.: Topology, 2nd edn. Prentice-Hall, Upper Saddle River (2000)

    MATH  Google Scholar 

  22. Näkki, R.: Boundary behavior of quasiconformal mappings in \(n\)-space. Ann. Acad. Sci. Fenn. Ser. A I Math. 484, 1–50 (1970)

    MathSciNet  MATH  Google Scholar 

  23. Näkki, R.: Private communication. (2010)

  24. Newman, M.H.A.: Elements of the Topology of Plane Sets of Points, 1st edn. Cambridge University Press, Cambridge (1939)

    MATH  Google Scholar 

  25. Ohtsuka, M.: Dirichlet Problem. Extremal Length and Prime Ends. Van Nostrand, Princeton (1970)

    MATH  Google Scholar 

  26. Pommerenke, C.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975)

    MATH  Google Scholar 

  27. Pommerenke, C.: Boundary Behaviour of Conformal Maps. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  28. Rempe, L.: On prime ends and local connectivity. Bull. Lond. Math. Soc. 40, 817–826 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Väisälä, J.: Lectures on \(n\)-Dimensional Quasiconformal Mappings, Lecture Notes in Mathematics, vol. 229. Springer, Berlin (1971)

    MATH  Google Scholar 

  30. Whyburn, G.T.: Analytic Topology. American Mathematical Society Colloquium Publications, vol. 28. American Mathematical Society, Providence (1942)

    MATH  Google Scholar 

Download references

Acknowledgments

This research was begun while the first two authors visited the University of Cincinnati during the first half year of 2010, and continued while the third author visited Linköpings universitet in March 2011, and during the stay of the three authors at Institut Mittag-Leffler in Autumn 2013. We wish to thank these institutions for their kind hospitality. We also wish to thank Tomasz Adamowicz and Harold Bell for fruitful discussions. The first two authors were supported by the Swedish Research Council. The first author was also a Fulbright scholar during his visit to the University of Cincinnati, supported by the Swedish Fulbright Commission, while the second author was a Visiting Taft Fellow during her visit to the University of Cincinnati, supported by the Charles Phelps Taft Research Center at the University of Cincinnati. The third author was also supported by the Taft Research Center of the University of Cincinnati and by grant #200474 from the Simons Foundation and NSF grant DMS-1200915.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nageswari Shanmugalingam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Björn, A., Björn, J. & Shanmugalingam, N. The Mazurkiewicz Distance and Sets that are Finitely Connected at the Boundary. J Geom Anal 26, 873–897 (2016). https://doi.org/10.1007/s12220-015-9575-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9575-9

Keywords

Mathematics Subject Classification

Navigation