Skip to main content
Log in

Multi-seasonal ultrafine aerosol particle number concentration measurements at the Gruvebadet observatory, Ny-Ålesund, Svalbard Islands

  • Environmental Changes in Arctic
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

The object of this study was to investigate the different modal behavior of ultrafine aerosol particles collected at the Gruvebadet observatory located in Ny-Ålesund (Svalbard Islands, 78°55′N, 11°56′E). Aerosol particle size distribution was measured in the size range from 10 to 470 nm typically from the beginning of spring to the beginning of fall during four (non-consecutive) years (2010, 2011, 2013 and 2014). The median concentration for the whole period taken into account was 214 particles cm−3, oscillating between the median maximum in July with a concentration of 257 particles cm−3 and a median minimum in April with 197 particles cm−3. The median total number concentration did not present a well-defined seasonal behavior, as shown by contrast looking at the sub/modal number concentration, where distinct trends appeared in the predominant accumulation concentration recorded during April/May and the preponderant concentration of Aitken particles during the summer months. Lastly, the short side-by-side spring 2013 campaign performed at the Zeppelin observatory with a differential mobility particle sizer was characterized by an aerosol concentration mean steady difference between the two instruments of around 14 %, thereby supporting the reliability of the device located at Gruvebadet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Asmi E, Freney E, Hervo M, Picard D, Rose C, Colomb A, Sellegri K (2012) Aerosol cloud activation in summer and winter at Puy-de-Dôme high altitude site in France. Atmos Chem Phys 12:11589–11607. doi:10.5194/acp-12-11589-2012

    Article  CAS  Google Scholar 

  • Asmi E, Kondratyev V, Brus D, Laurila T, Lihavainen H, Backman J, Vakkari V, Aurela M, Hatakka J, Viisanen Y, Uttal T, Ivakhov V, Makshtas A (2015) Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic. Atmos Chem Phys Discuss 15:18109–18149. doi:10.5194/acpd-15-18109-2015

    Article  Google Scholar 

  • Bodhaine BA (1989) Barrow surface aerosol: 1976–1986. Atmos Environ 23:2357–2369

    Article  CAS  Google Scholar 

  • Covert DS, Wiedensohler A, Aalto P, Heintzenberg J, McMurry PH, Leck C (1996) Aerosol number size distribution from 3 to 500 nm diameter in the arctic marine boundary layer during summer and autumn. Tellus 48B:197–212

    CAS  Google Scholar 

  • Dal Maso M, Kulmala M, Riipinen I, Wagner R, Hussein T, Aalto PP, Lehtinen KEJ (2005) Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiala, Finland. Boreal Environ Res 10:323–336

    Google Scholar 

  • Engvall AC, Krejci R, Ström J, Treffeisen R, Scheele R, Hermansen O, Paatero J (2008) Changes in aerosol properties during spring–summer period in the Arctic troposphere. Atmos Chem Phys 8:445–462. doi:10.5194/acp-8-445-2008

    Article  CAS  Google Scholar 

  • Garrett TJ, Verzella LL (2008) Looking back: an evolving history of Arctic aerosols. Bull Am Meteorol Soc 89:299–302. doi:10.1175/BAMS-89-3-299

    Article  Google Scholar 

  • Hogrefe O, Lala GG, Frank BP, Schwab JJ, Demerjian KL (2006) Field evaluation of a TSI 3034 scanning mobility particle sizer in New York City: Winter 2004 intensive campaign. Aerosol Sci Technol 40:753–762

    Article  CAS  Google Scholar 

  • Hussein T, Dal Maso M, Petaja T, Koponen I, Paatero P, Aalto P, Hameri K, Kulmala M (2005) Evaluation of an automatic algorithm for fitting the particle number size distributions. Boreal Environ Res 10:337–355

    Google Scholar 

  • Järvinen E, Virkkula A, Nieminen T, Aalto PP, Asmi E, Lanconelli C, Busetto M, Lupi A, Schioppo R, Vitale V, Mazzola M, Petäjä T, Kerminen VM, Kulmala M (2013) Seasonal cycle and modal structure of particle number size distribution at Dome C, Antarctica. Atmos Chem Phys 13:7473–7487. doi:10.5194/acp-13-7473-2013

    Article  Google Scholar 

  • Kulmala M, Petaja T, Nieminen T, Sipila M, Manninen HE, Lehtipalo K, Dal Maso M, Aalto PA, Juninen H, Riipinene I, Lehtinen KEJ, Laaksonen A, Kerminen VM (2012) Measurement of the nucleation of atmospheric aerosol particles. Nat Protoc 7(9):1651–1667. doi:10.1038/nprot.2012.091

    Article  CAS  Google Scholar 

  • Law K, Stohl A (2007) Arctic air pollution: origins and impacts. Science 315(5818):1537–1540

    Article  CAS  Google Scholar 

  • Law K, Stohl A, Quinn P, Brock C, Burkhart J, Paris J, Ancellet G, Singh H, Roiger A, Schlager H, Dibb J, Jacob D, Arnold S, Pelon J, Thomas J (2014) Arctic air pollution: new insights from POLARCAT-IPY. Bull Am Meteorol Soc 95:1873–1895. doi:10.1175/BAMS-D-13-00017.1

    Article  Google Scholar 

  • Moorthy KK, Sreekanth V, Chaubey JP, Gogoi MM, Babu SS, Kompalli SK, Bagare SP, Bhatt BC, Gaur VK, Prabhu TP, Singh NS (2011) Fine and ultrafine particles at a near–free tropospheric environment over the high-altitude station Hanle in the Trans-Himalaya: new particle formation and size distribution. J Geophys Res 116:D20212. doi:10.1029/2011JD016343

    Article  Google Scholar 

  • Pithan F, Mauritsen T (2014) Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat Geosci 7:181–184. doi:10.1038/ngeo2071

    Article  CAS  Google Scholar 

  • Quinn PK, Shaw G, Andrews E, Dutton EG, Ruoho-Airola T, Gong SL (2007) Arctic haze: current trends and knowledge gaps. Tellus 59:99–114. doi:10.1111/j.1600-0889.2006.00238.x

    Article  Google Scholar 

  • Stohl A, Klimont A, Eckhardt S, Kupiainen K, Shevchenko VP, Kopeikin VM, Novigatsky AN (2013) Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions. Atmos Chem Phys 13:8833–8855. doi:10.5194/acp-13-8833-2013

    Article  Google Scholar 

  • Ström J, Umegård J, Tørseth K, Tunved P, Hansson HC, Holmén K, Wismann V, Herber A, König-Langlo G (2003) One year of particle size distribution and aerosol chemical composition measurements at the Zeppelin Station, Svalbard. Phys Chem Earth 28:1181–1190. doi:10.1016/j.pc.2003.08.058

    Article  Google Scholar 

  • Ström J, Engvall AC, Delbart F, Krejci R, Treffeisen R (2009) On small particles in the Arctic summer boundary layer: observations at two different heights near Ny-Ålesund, Svalbard. Tellus Ser B Chem Phys Meteorol 61(2):473–482

    Article  Google Scholar 

  • Tomasi C, Kokhanovsky A, Lupi A, Ritter C, Smirnov A, O’Neill NT, Stone RS, Holben BN, Nyekij S, Wehrli C, Stohl A, Mazzola M, Lanconelli C, Vitale V, Stebel K, Aaltonen V, de Leeuwl G, Rodriguez E, Herber AB, Radionov VF, Zielinski T, Petelski T, Sakerin SM, Kabanov DM, Xue Y, Mei L, Istomina L, Wagener R, McArthur B, Sobolewski PS, Kivi R, Courcouxx Y, Larouchey P, Broccardo S, Piketh SJ (2015) Aerosol remote sensing in polar regions. Earth Sci Rev. doi:10.1016/j.earscirev.2014.11.001

    Google Scholar 

  • Tuch T, Mirme A, Tamm E, Heinrich J, Heyder J, Brand P, Roth C, Wichman HE, Pekkanen J, Kreyling W (2000) Comparison of two particle-size spectrometers for ambient aerosol measurements. Atmos Environ 34:139–149

    Article  CAS  Google Scholar 

  • Tunved P, Ström J, Krejci R (2013) Arctic aerosol life cycle: linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Ålesund, Svalbard. Atmos Chem Phys 13:3643–3660

    Article  Google Scholar 

  • von Hardenberg J, Vozella L, Tomasi C, Vitale V, Lupi A, Mazzola M, van Noije TPC, Strunk A, Provenzale A (2012) Aerosol optical depth over the Arctic: a comparison of ECHAM-HAM and TM5 with ground-based, satellite and reanalysis data. Atmos Chem Phys 12:6953–6967. doi:10.5194/acp-12-6953-2012

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially funded by the Italian Ministry of University and Research (MIUR) within the framework of the PRIN-2009 project 20092C7KRC_002. The authors gratefully acknowledge the DTA (Dipartimento Scienze del Sistema Terra e Tecnologie per l’Ambiente, CNR) for their logistic help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Lupi.

Additional information

This peer-reviewed article is a result of the multi and interdisciplinary research activities based at the Arctic Station “Dirigibile Italia”, coordinated by the “Dipartimento Scienze del Sistema Terra e Tecnologie per l’Ambiente” of the National Research Council of Italy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lupi, A., Busetto, M., Becagli, S. et al. Multi-seasonal ultrafine aerosol particle number concentration measurements at the Gruvebadet observatory, Ny-Ålesund, Svalbard Islands. Rend. Fis. Acc. Lincei 27 (Suppl 1), 59–71 (2016). https://doi.org/10.1007/s12210-016-0532-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-016-0532-8

Keywords

Navigation