Skip to main content
Log in

Vapour–Liquid Equilibrium for N, N-Dimethylformamide + Benzene + Thiophene via Gibbs Ensemble Molecular Simulation

  • Research article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

The selection and design of an optimal solvent for extractive distillation require reliable vapour–liquid phase equilibrium data and knowledge of extraction mechanisms. Compared with time-consuming experiments, molecular simulation presents great potential in research on the properties of fluids. Therefore, in this work, Gibbs ensemble Monte Carlo was applied to successfully predict the vapour–liquid phase equilibrium data of binary and ternary systems containing benzene, thiophene and N, N-dimethylformamide (DMF) at P = 101.3 kPa. The explicit hydrogen version of the transferable potentials for phase equilibria potential model was chosen for benzene and thiophene, whereas the OPLS potential model was selected for DMF. The predicted phase diagrams were compared with experimental data and the UNIQUAC thermodynamic model. A good agreement was obtained, which corroborated the validity of the potential models. In addition, the extraction mechanism was explored by radial distribution function (RDF) of the liquid-phase structure. The RDFs showed that thiophene and benzene shared a similar liquid-phase structure because of the intermolecular interaction. The distinct difference between the RDFs of DMF/benzene and those of DMF/thiophene is that the oxygen atom of DMF is more associated with hydrogen atoms of thiophene than that of benzene, which may be responsible for the extraction effect of DMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Jiang B, Yang H, Zhang L et al (2015) Efficient oxidative desulfurization of diesel fuel using amide-based ionic liquids. Chem Eng J 283:89–96

    Article  Google Scholar 

  2. Ibrahim JJ, Gao S, Yu L et al (2015) Extractive desulfurization of fuel oils with dicyano(nitroso) methanide-based ionic liquids. Sep Sci Technol 50(8):1166–1174

    Article  Google Scholar 

  3. Zhang L, Feng J, Chu Q et al (2015) Effect of potassium on the catalytic performance of Ni2Mo3N catalyst during hydrogenation of thiophene-containing benzene. Catal Commun 66:50–54

    Article  Google Scholar 

  4. Weitkamp J, Schwark M, Ernst S (1991) Removal of thiophene impurities from benzene by selective adsorption in zeolite ZSM-5. J Chem Soc Chem Commun 16:1133–1134

    Article  Google Scholar 

  5. Dai C, Dong Y, Lei Z et al (2015) Separation of benzene and thiophene with a mixture of N-methyl-2-pyrrolidinone (NMP) and ionic liquid as the entrainer. Fluid Phase Equilib 388:142–150

    Article  Google Scholar 

  6. Hanson C, Patel AN, Chang-Kakoti DK (1969) Separation of thiophene from benzene by solvent extraction. II. J Appl Chem 20:42–44

    Article  Google Scholar 

  7. Shiriniana VZ, Zavarzina IV, Leonova ES et al (2015) Synthesis of new merocyanine dyes of thiophene series. Mendeleev Commun 25:262–263

    Article  Google Scholar 

  8. Farid A, James SP (1980) The preparation of thiophenes. I. From C4-molecules and carbon disulphide. J Chem Technol Biotechnol 30(1):429–434

    Google Scholar 

  9. Atansa T, Francois F, Claude M (2000) Vapour-phase synthesis of thiophene from crotonaldehyde and carbon disulfide over promoted chromia on γ-alumina catalysts. Appl Catal A 192(1):71–79

    Article  Google Scholar 

  10. Nardes AM, Kemerink M, Maturova K et al (2008) Conductivity, work function, and environmental stability of PEDOT: PSS thin films treated with sorbitol. Org Electron 9(5):727–734

    Article  Google Scholar 

  11. Ju J, Yu J, Zhang X et al (2015) Isobaric vapor-liquid equilibrium of benzene-thiophene-dimethyl sulfoxide systems. J Chem Eng Chin Univ 29:724–730 (in Chinese)

    Google Scholar 

  12. Li X, Zhao L, Cheng T et al (2008) One force field for predicting multiple thermodynamic properties of liquid and vapor ethylene oxide. Fluid Phase Equilib 274(1):36–43

    Article  Google Scholar 

  13. Cesar C, Edward JM (2006) Molecular simulation study of some thermophysical and transport properties of triazolium-based ionic liquids. J Phys Chem B 110(36):18026–18039

    Article  Google Scholar 

  14. Neeraj R, Siepmann JI (2013) Transferable potentials for phase equilibria. 10. Explicit-hydrogen description of substituted benzenes and polycyclic aromatic compounds. J Phys Chem B 117(1):273–288

    Article  Google Scholar 

  15. Panagiotopoulos AZ (1992) Direct determination of fluid phase equilibria by simulation in the Gibbs ensemble: a review. Mol Simul 9(1):1–23

    Article  MathSciNet  Google Scholar 

  16. Kofke DA (1993) Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line. J Chem Phys 98(5):4149

    Article  Google Scholar 

  17. Gergely K, István S, Martin W et al (2000) Extension of the NPT+ test particle method for the calculation of phase equilibria of nitrogen + ethane. J Mol Liq 85(1):237–247

    Google Scholar 

  18. Jorgensen WL, Madura JD, Swenson CJ (1984) Optimized intermolecular potential functions for liquid hydrocarbons. J Am Chem Soc 106(22):6638–6646

    Article  Google Scholar 

  19. Contreras-Camacho RO, Ungerer P, Mackie AD et al (2004) Optimized intermolecular potential for aromatic hydrocarbons based on anisotropic united atoms. 1. Benzene. J Phys Chem B 108:14109–14114

    Article  Google Scholar 

  20. Nath SK, Escobedo F, Fernando A et al (1998) On the simulation of vapor–liquid equilibria for alkanes. J Chem Phys 108(23):9905–9911

    Article  Google Scholar 

  21. Martin MG (2006) Comparison of the AMBER, CHARMM, COMPASS, GROMOS, OPLS, TraPPE and UFF force fields for prediction of vapor–liquid coexistence curves and liquid densities. Fluid Phase Equilib 248(1):50–55

    Article  Google Scholar 

  22. Martin MG, Siepmann JI (1999) Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes. J Phys Chem B 103(21):4508–4517

    Article  Google Scholar 

  23. Potoff JJ, Siepmann JI (2001) Vapor–liquid equilibria of mixtures containing alkanes, carbondioxide, and nitrogen. AIChE 47(7):1676–1682

    Article  Google Scholar 

  24. Rai N, Siepmann JI (2007) Transferable potentials for phase equilibria. 9. Explicit hydrogen description of benzene and five-membered and six-membered heterocyclic aromatic compounds. J Phys Chem B 111(36):10790–10799

    Article  Google Scholar 

  25. Chalaris M, Samios J (2000) Systematic molecular dynamics studies of liquid N, N-dimethylformamide using optimized rigid force fields: investigation of the thermodynamic, structural, transport and dynamic properties. J Chem Phys 112(19):8581–8594

    Article  Google Scholar 

  26. Martin MG (2013) MCCCS Towhee: a tool for Monte Carlo molecular simulation. Mol Simul 39(14):1184–1194

    Google Scholar 

  27. Schnabe T, Vrabec J, Hasse H (2007) Unlike Lennard-Jones parameters for vapor–liquid equilibria. J Mol Liq 135(1):170–178

    Article  Google Scholar 

  28. Green DW, Perry RH (2008) Perry’s chemical engineers’ handbook, 8th edn. McGraw-Hill Press, New York

    Google Scholar 

  29. Rowlinson JS, Widom B (1982) Molecular theory of capillarity. Oxford Press, Clarendon

    Google Scholar 

  30. Rowlinson JS, Swinton FL (1982) Liquids and liquid mixtures, 3rd edn. Butterworth Press, London

    Google Scholar 

  31. Gmehling J, Onken U, Arlt W (1980) Vapor–liquid equilibrium data collection. pt. 7. Aromatic hydrocarbons. DECHEMA Press, Chemistry Data Series, Frankfurt am Main, Germany

  32. Seiji T, Tadafumi U, Masuhiro M (2002) Energy profile of the interconversion path between T-shape and slipped-parallel benzene dimers. J Chem Phys 117(42):11216–11221

    Google Scholar 

  33. Seiji T, Kazumasa H, Reiko A (2002) Model chemistry calculations of thiophene dimer interactions: origin of π-stacking. J Am Chem Soc 124(41):12200–12209

    Article  Google Scholar 

  34. Blanco B, Beltrn S, Cabezas J (1997) Phase equilibria of binary systems formed by hydrocarbons from petroleum fractions and the solvents N-methylpyrrolidone and N, N-dimethylformamide. 1. Isobaric vapor–liquid equilibria. J Chem Eng Data 42(5):937–942

    Article  Google Scholar 

  35. Bondi A (1964) Van der Waals volumes and radii. J Chem Phys 68(3):441–451

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiwu Zeng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, A., Chen, W., Ma, J. et al. Vapour–Liquid Equilibrium for N, N-Dimethylformamide + Benzene + Thiophene via Gibbs Ensemble Molecular Simulation. Trans. Tianjin Univ. 23, 26–34 (2017). https://doi.org/10.1007/s12209-016-0024-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-016-0024-z

Keywords

Navigation