Skip to main content
Log in

Synthesis and characterization of novel copolymers based on 3(S)-methyl-morpholine-2,5-dione

  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

A series of novel copolymers were successfully synthesized by ring-opening polymerization (ROP) of 3(S)-methyl-morpholine-2,5-dione (MMD) and 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one (MBC) using stannous octoate as catalyst. The copolymers were characterized by means of 1H-NMR and FT-IR spectroscopy. Gel permeation chromatography (GPC) test shows that the average-number relative molecular mass and average-weight relative molecular mass slightly increase with the increase of MBC content in feed. The results of differential scanning calorimetry (DSC) demonstrate that the glass transition temperature of copolymers increases with the increase of MBC content in copolymers. The copolymers of MMD and MBC are amorphous copolymers, as indicated by DSC results, while the homopolymer of MMD is semicrystalline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lutz J F, Andrieu J, Uzgun S et al. Biocompatible, thermoresponsive, and biodegradable: Simple preparation of “all-in-one” biorelevant polymers[J]. Macromolecules, 2007, 40(24): 8540–8543.

    Article  Google Scholar 

  2. Green J J, Zhou B Y, Mitalipova M M et al. Nanoparticles for gene transfer to human embryonic stem cell colonies[J]. Nano Letters, 2008, 8(10): 3126–3130.

    Article  Google Scholar 

  3. Tian Jing, Feng Yakai, Xu Yongshen. Ring opening polymerization of D,L-lactide on magnetite nanoparticles[J]. Macromolecular Research, 2006, 14(2): 209–213.

    Article  MathSciNet  Google Scholar 

  4. Lim S K, Lee S I, Jang S G et al. Synthetic aliphatic biodegradable poly(butylene succinate)/MWNT nanocomposite foams and their physical characteristics[J]. Journal of Macromolecular Science(Part B), 2011, 50(6):1171–1184.

    Article  Google Scholar 

  5. Feng Yakai, Lu Jian, Behl M et al. Progress in depsipeptide-based biomaterials[J]. Macromolecular Bioscience, 2010, 10(9): 1008–1021.

    Article  Google Scholar 

  6. Lin Jiaping, Zhu Jiaqi, Chen Tao et al. Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer[J]. Biomaterials, 2009, 30(1): 108–117.

    Article  Google Scholar 

  7. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery[J]. Advanced Drug Delivery Reviews, 2008, 60(15): 1638–1649.

    Article  Google Scholar 

  8. Feng Yakai, Guo Jintang. Biodegradable polydepsipeptides[J]. International Journal of Molecular Sciences, 2009, 10(2): 589–615.

    Article  MathSciNet  Google Scholar 

  9. Borner H G. Functional polymer-bioconjugates as molecular LEGO bricks[J]. Macromolecular Chemistry and Physics, 2007, 208(2): 124–130.

    Article  Google Scholar 

  10. Kim J, Magno M H R, Alvarez P et al. Osteogenic differentiation of pre-osteoblasts on biomimetic tyrosine-derived polycarbonate scaffolds[J]. Biomacromolecules, 2011, 12(10): 3520–3527.

    Article  Google Scholar 

  11. Battig A, Hiebl B, Feng Yakai et al. Biological evaluation of degradable, stimuli-sensitive multiblock copolymers having polydepsipeptide- and poly(ɛ-caprolactone) segments in vitro[J]. Clinical Hemorheology and Microcirculation, 2011, 48(1–3): 161–172.

    Google Scholar 

  12. Abayasinghe N K, Perera K P U, Thomas C et al. Amidomodified polylactide for potential tissue engineering applications[J]. Journal of Biomaterials Science Polymer Edition, 2004, 15(5): 595–606.

    Article  Google Scholar 

  13. Katsarava R, Beridze V, Arabuli N et al. Amino acid-based bioanalogous polymers: Synthesis, and study of regular poly(ester amide)s based on bis(α-amino acid) α, ω-alkylene diesters, and aliphatic dicarboxylic acids[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 1999, 37(4): 391–407.

    Article  Google Scholar 

  14. Schakenraad J M, Nieuwenhuis P, Molenaar I et al. In vivo and in vitro degradation of glycine/D,L-lactic acid copolymers[J]. Journal of Biomedical Materials Research, 1989, 23(11): 1271–1288.

    Article  Google Scholar 

  15. Wang Dong, Feng Xinde. Copolymerization of ɛ-caprolactone with (3S)-3-[(benzyloxycarbonyl)methyl] morpholine-2,5-dione and the 13C NMR sequence analysis of the copolymer[J]. Macromolecules, 1998, 31(12): 3824–3831.

    Article  Google Scholar 

  16. Gilon C, Klausner Y. A novel method for the facile synthesis of depsipeptides[J]. Tetrahedron Letters, 1979, 20(40): 3811–3814.

    Article  Google Scholar 

  17. Chorev M, Willson C G, Goodman M. A general approach to retro-isomeric linear peptide synthesis[J]. Journal of the American Chemical Society, 1977, 99(24): 8075–8076.

    Article  Google Scholar 

  18. Katakai R, Kobayashi K, Yamada K et al. Synthesis of sequential polydepsipeptides utilizing a new approach for the synthesis of depsipeptides[J]. Biopolymers, 2004, 73(6): 641–644.

    Article  Google Scholar 

  19. Barrera D A, Zylstra E, Lansbury E et al. Copolymerization and degradation of poly(lactic acid-colysine)[J]. Macromolecules, 1995, 28(2): 425–432.

    Article  Google Scholar 

  20. Zhu Caihong, Chen Qiang, Tian Weiwei et al. Synthesis and characterization of copolymers with 3-methylmorpholine-2,5-dione and L-lactide[J]. Materials Review, 2004, 18(7): 96–98 (in Chinese).

    Google Scholar 

  21. Helder J, Kohn F E, Sato S et al. Synthesis of poly [oxyethylidenecarbonylimino (2-oxoethylene)][poly (glycine-D, L-lactic acid)] by ring opening polymerization[J]. Macromolecular Rapid Communications, 1985, 6(1): 9–14.

    Article  Google Scholar 

  22. Feng Yakai, Klee D, Höcker H. New biomaterial: Triblock copolymers of poly [3(S)-isobutyl-morpholine-2,5-dione]-poly(ethylene oxide)[J]. Materialwissenschaft und Werkstofftechnik, 1999, 30(12): 862–868 (in German).

    Article  Google Scholar 

  23. Kricheldorf H R, Jenssen J. Polylactones. 16. Cationic polymerization of trimethylene carbonate and other cyclic carbonates[J]. Journal of Macromolecular Science(Part A): Chemistry, 1989, 26(4): 631–644.

    Article  Google Scholar 

  24. Kricheldorf H R, Weegen-Schulz B. Polymers of carbonic acid. 11. Reactions and polymerizations of aliphatic cyclocarbonates with boron halogenides[J]. Macromolecules, 1993, 26(22): 5991–5998.

    Article  Google Scholar 

  25. Kricheldorf H R, Hauser K. Polylactones, 45. Homo- and copolymerizations of 3-methylmorpholine-2, 5-dione initiated with a cyclic tin alkoxide[J]. Macromolecular Chemistry and Physics, 2001, 202(7): 1219–1226.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakai Feng  (冯亚凯).

Additional information

Supported by Chinese Program for New Century Excellent Talents in University “NCET”, Ministry of Education of P.R. China(No. 2008DFA51170).

FENG Yakai, born in 1966, male, Dr, Prof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Y., Chen, C., Zhang, L. et al. Synthesis and characterization of novel copolymers based on 3(S)-methyl-morpholine-2,5-dione. Trans. Tianjin Univ. 18, 315–319 (2012). https://doi.org/10.1007/s12209-012-1864-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-012-1864-9

Keywords

Navigation