Skip to main content
Log in

Triaxial test research on mechanical properties and permeability of sandstone with a single joint filled with gypsum

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

In this study, the mechanical properties and permeability variation in single joint rock samples filled with a gypsum layer were investigated. In order to simulate the inclined infilled joint, the solid cylinders were saw-cut at the dip angles of 90°, 60°, 45°, 30° or 0° with respect to the samples’ axes, and then joined together with gypsum. Triaxial compression experiments with permeability measurements were then performed using these prepared samples. The results indicated that the peak strength and failure modes change with the inclined angles. In comparison with the theoretical analysis of rock with a clean joint, infilling has a marked influence on the mechanical properties to some extent. In regards to the initial permeability, the results showed decreases of approximately two orders of magnitude with the increasing of the prefabricated joint angle, and the initial permeability of the samples with a prefabricated joint were all larger than the intact sample. The evolutionary trends of the permeabilities in triaxial compression in the sandstone samples were shown to be varied with a joint filled with gypsum at different angles, due to the fact that the changes of the inner structure are quite different during the loading process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asadi, M. and Bagheripour, M. H. (2014). “Numerical and intelligent modeling of triaxial strength of anisotropic jointed rock specimens.” Earth Science Informatics, Vol. 7, No. 3, pp. 165–172, DOI: 10.1007/s12145-013-0137-z.

    Article  Google Scholar 

  • Barton, N. and Choubey, V. (1977). “The shear strength of rock joints in theory and practice.” Rock Mechanics, Vol. 10, Nos. 1-2, pp. 1:54, DOI: 10.1007/BF01261801.

    Article  Google Scholar 

  • Brace, W. F., Walsh, J. B., and Frangos, W. T. (1968). “Permeability of granite under high pressure.” Journal of Geophysical Research, Vol. 73, No. 6, pp. 2225–2236, DOI: 10.1029/JB073i006p02225.

    Article  Google Scholar 

  • Cha, M., Cho, G. C., and Santamarina, J. C. (2009). “Long-wavelength P-wave and S-wave propagation in jointed rock masses.” Geophysics, Vol. 74, No. 5, pp. E205–E214, DOI: 10.1190/1.3196240.

    Article  Google Scholar 

  • Chong, W. L., Haque, A., Gamage, R. P., and Shahinuzzaman A. (2013). “Modelling of intact and jointed mudstone samples under uniaxial and triaxial compression.” Arabian Journal of Geosciences, Vol. 6, No. 5, pp. 1639–1646, DOI: 10.1007/s12517-011-0463-8.

    Article  Google Scholar 

  • De Toledo, P. E. C., and De Freitas, M. H. (1993). “Laboratory testing and parameters controlling the shear strength of filled rock joints.” Géotechnique, Vol. 43, No. 1, pp. 1–19, DOI: 10.1680/geot.1993.43.1.1.

    Article  Google Scholar 

  • Douglas, K. J. (2002). “The shear strength of rock masses.” PhD. Thesis, The University of New South Wales.

    Google Scholar 

  • Fox, D. J., KaÑa, D. D., and Hsiung, S. M. (1998). “Influence of interface roughness on dynamic shear behavior in jointed rock.” International Journal of Rock Mechanics and Mining Sciences, Vol. 35, No. 7, pp. 923–940, DOI: 10.1016/S0148-9062(98)00153-3.

    Article  Google Scholar 

  • Garaga, A. and Latha, G. M. (2010). “Intelligent prediction of the stressstrain response of intact and jointed rocks.” Computers and Geotechnics, Vol. 37, No. 5, pp. 629–637, DOI: 10.1016/j.compgeo.2010.04.001.

    Article  Google Scholar 

  • Grasselli, G. (2006). “Manuel rocha medal recipient shear strength of rock joints based on quantified surface description.” Rock Mechanics and Rock Engineering, Vol. 39, No. 4, pp. 295–314, DOI: 10.1007/s00603-006-0100-0.

    Article  Google Scholar 

  • Guéguen, Y. and Palciauskas, V. (1992). “Introduction à la physique des roches.” Hermann, France. 299 p.

    Google Scholar 

  • Haberfield, C. M. and Johnson, I. W. (1994). “A mechanistically-based model for rough rock joints.” International Journal of Rock Mechanics and Mining Sciences, Vol. 31, No. 4, pp. 279–292, DOI: 10.1016/0148-9062(94)90898-2.

    Article  Google Scholar 

  • Hoek, E. (1983). “Strength of jointed rock masses.” Géotechnique, Vol. 33, No. 3, pp. 187–223, DOI: 10.1680/geot.1983.33.3.187.

    Article  Google Scholar 

  • Hoek, E. and Brown, E. T. (1997). “Practical estimates of rock mass strength.” International Journal of Rock Mechanics and Mining Sciences, Vol 8, No. 34. pp. 1165–1186, DOI: 10.1016/S1365-1609(97)80069-X.

    Article  Google Scholar 

  • Indraratna, B. and Jayanathan, M. (2005). “Measurement of pore water pressure of clay-infilled rock joints during triaxial shearing.” Géotechnique, Vol. 55, No. 10, pp. 759–764, DOI: 10.1680/geot.2005.55.10.759.

    Article  Google Scholar 

  • Indraratna, B., Jayanathan, M., and Brown, E. T. (2008). “Shear strength model for overconsolidated clay-infilled idealised rock joints.” Géotechnique, Vol. 58, No. 1, pp. 55–65, DOI: 10.1680/geot.2008.58.1.55.

    Article  Google Scholar 

  • Indraratna, B., Brown, E. T., and Oliveira, D. A. F. (2010). “A sheardisplacement criterion for soil-infilled rock discontinuities.” Géotechnique, Vol. 60, No. 8, pp. 623–633, DOI: 10.1680/geot.8.P.094.

    Article  Google Scholar 

  • Jiang, Y. J., Li, B., and Tanabashi, Y. (2006). “Estimating the relation between surface roughness and mechanical properties of rock joints.” International Journal of Rock Mechanics and Mining Sciences, Vol. 43, No. 6, pp. 837–846, DOI: 10.1016/j.ijrmms. 2005.11.013.

    Article  Google Scholar 

  • Kabeya, K. K. and Legge, T. F. H. (1997). “Relationship between grain size and some surface roughness parameters of rock joints.” International Journal of Rock Mechanics and Mining Sciences, Vol. 34, Nos. 3-4, pp. 146.e1–146.e15, DOI: 10.1016/S1365-1609 (97)00186-X.

    Google Scholar 

  • Kim, H. M. and Inoue, J. (2003). “Analytical approach for anisotropic permeability through a single rough rock joint under shear deformation.” Journal of Geophysical Research, Vol. 108, No. B8, pp. 1–10, DOI: 10.1029/2002JB002283.

    Article  Google Scholar 

  • Koyama, T., Neretnieks, I., and Jing, L. (2008). “A numerical study on differences in using Navier–Stokes and Reynolds equations for modeling the fluid flow and particle transport in single rock fractures with shear.” International Journal of Rock Mechanics and Mining Sciences, Vol. 45, No. 7, pp. 1082–1101, DOI: 10.1016/j.ijrmms.2007.11.006.

    Article  Google Scholar 

  • Kranzz, R. L., Frankel, A. D., Engelder, T., and Schilz, C. H. (1979). “The permeability of whole and jointed Barre Granite.” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 16, No. 4, pp. 225–234, DOI: 10.1016/0148-9062(79)91197-5.

    Article  Google Scholar 

  • Lee, J. S., Bang, C. S., Mok, Y. J., and Joh, S. H. (2000). “Numerical and experimental analysis of penetration grouting in jointed rock masses.” International Journal of Rock Mechanics and Mining Sciences, Vol. 37, No. 7, pp. 1027–1037, DOI: 10.1016/S1365-1609(00)00040-X.

    Article  Google Scholar 

  • Li, B., Jiang, Y. J., Koyama, T., Jing, L., and Tanabashi, Y. (2008). “Experimental study of the hydro-mechanical behavior of rock joints using a parallel-plate model containing contact areas and artificial fractures.” International Journal of Rock Mechanics and Mining Sciences, Vol. 45, No. 3, pp. 362–375, DOI: 10.1016/j.ijrmms. 2007.06.004.

    Article  Google Scholar 

  • Li, J. L., Wang, L. H., Wang, X. X., Wang, R., Cheng, Z., and Dang, L. (2010). “Research on unloading nonlinear mechanical characteristics of jointed rock masses.” Journal of Rock Mechanics and Geotechnical Engineering, Vol. 2, No. 4, pp. 357–364, DOI: 10.3724/SP.J.1235. 2010.00357.

    Google Scholar 

  • Li, S. P., Wu, D. X., Xie, W. H., Li, Y. S., Wu, Z. Y., Zhou, G., and Zhao, H. Y. (1997). “Effect of confining pressure, pore pressure and specimen dimension on permeability of Yinzhuang sandstone.” International Journal of Rock Mechanics and Mining Sciences, Vol. 34, Nos. 3-4, pp. 175.e1–175.e11, DOI: 10.1016/S1365-1609(97) 00231-1.

    Google Scholar 

  • Méheust, Y. and Schmittbuhl, J. (2000). “Flow enhancement of a rough fracture.” Geophysical Research Letters, Vol. 27, No. 18, pp. 2989–2992, DOI: 10.1029/1999GL008464.

    Article  Google Scholar 

  • Mirzaghorbanali, A,, Nemcik, J. and Aziz, N. (2014). “Effects of cyclic loading on the shear behaviour of infilled rock joints under constant normal stiffness conditions.” Rock Mechanics and Rock Engineering, Vol. 47, No. 4, pp. 1373–1391, DOI: 10.1007/s00603-013-0452-1.

    Article  Google Scholar 

  • Nicholson, H., Dawn, T., and Nicholson, F. H. (2000). “Physical deterioration of sedimentary rocks subjected to experimental freeze–thaw weathering.” Earth Surface Processes and Landforms, Vol. 25, No. 12, pp. 1295–1307, DOI: 10.1002/1096-9837(200011).

    Article  Google Scholar 

  • Oliveira, D. A. F., Indraratna, B., and Nemcik, J. (2009). “Critical review on shear strength models for soil-infilled joints.” Geomechanics and Geoengineering: An International Journal, Vol. 4, No. 3, pp. 237–244, DOI: 10.1080/17486020903128564.

    Article  Google Scholar 

  • Oliveira, D. A. F. and Indraratna, B. (2010). “Comparison between models of rock discontinuity strength and deformation.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 6, pp. 864–874, DOI: 10.1061/_ASCE_GT.1943-5606.0000284.

    Article  Google Scholar 

  • Papaliangsa, T., Hencher, S. R., Lumsden, A. C., and Manolopoulou, S. (1993). “The effect of frictional fill thickness on the shear strength of rock discontinuities.” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 30, No. 2, pp. 81–91, DOI: 10.1016/0148-9062(93)90702-F.

    Article  Google Scholar 

  • Raziperchikolaee, S., Alvarado, V., and Yin, S. (2014). “Effect of fracture roughness on seismic source and fluid transport responses.” Geophysical Research Letters, Vol. 41, No. 5, pp. 1530–1536, DOI: 10.1002/2013GL058683.

    Article  Google Scholar 

  • Sinha, U. N. and Singh, B. (2000). “Testing of rock joints filled with gouge using a triaxial apparatus.” International Journal of Rock Mechanics and Mining Sciences, Vol. 37, No. 6, pp. 963–981, DOI: 10.1016/S1365-1609(00)00030-7.

    Article  Google Scholar 

  • Verma, A. K. and Singh, T. N. (2009). “Modeling of a jointed rock mass under triaxial conditions.” Arabian Journal of Geosciences, Vol. 3, No. 1, pp. 91–103, DOI: 10.1007/s12517-009-0063-z.

    Article  MathSciNet  Google Scholar 

  • Wong, L. N. Y., Li, D. Y., and Liu. G. (2013). “Experimental studies on permeability of intact and singly jointed meta-sedimentary rocks under confining pressure.” Rock Mechanics and Rock Engineering, Vol. 46, No. 1, pp. 107–121, DOI: 10.1007/s00603-012-0251-0.

    Article  Google Scholar 

  • Yang, H. Q., Huang, D., Yang, X. M., and Zhou X. P. (2013). “Analysis model for the excavation damage zone in surrounding rock mass of circular tunnel.” Tunnelling and Underground Space Technology, Vol. 35, pp. 78–88, DOI: 10.1016/j.tust.2012.12.006.

    Article  Google Scholar 

  • Yeo, I. W., De Freitas, M. H., and Zimmerman, R. W. (1998). “Effect of shear displacement on the aperture and permeability of a rock fracture.” International Journal of Rock Mechanics and Mining Sciences, Vol. 35, No. 8, pp. 1051–1070, DOI: 10.1016/S0148-9062(98)00165-X.

    Article  Google Scholar 

  • Zhang, F. M., Zhou, Z. F., Huang, Y. Q., and Chen, Z. Y. (2005). “Determining the permeability of fractured rocks based on joint mapping.” Groundwater, Vol. 42, No. 4, pp. 509–515, DOI: 10.1111/j.1745-6584.2004.tb02619.x.

    Article  Google Scholar 

  • Zhang, L. Y. (2010). “Estimating the strength of jointed rock masses.” Rock Mechanics and Rock Engineering, Vol. 43, No. 4, pp. 391–402 DOI: 10.1007/s00603-009-0065-x.

    Article  Google Scholar 

  • Zhang, Y. Z., Lu, W. B., Chen, M., Yan, P., and Hu, Y. G. (2013). “Dam foundation excavation techniques in China: A review.” Journal of Rock Mechanics and Geotechnical Engineering, Vol. 5, No. 6, pp. 460–467, DOI: 10.1016/j.jrmge.2013.08.002.

    Article  Google Scholar 

  • Zhou, Y., Wu, S. C., Gao, Y. T., and Misra, A. (2014). “Macro and meso analysis of jointed rock mass triaxial compression test by using Equivalent Rock Mass (ERM) technique.” Journal of Central South University of Technology, Vol. 3, No. 21, pp. 11251135, DOI: 10.1007/s11771-014-2045-x.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Chen, X., Cai, Yy. et al. Triaxial test research on mechanical properties and permeability of sandstone with a single joint filled with gypsum. KSCE J Civ Eng 20, 2243–2252 (2016). https://doi.org/10.1007/s12205-015-1663-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-1663-7

Keywords

Navigation