Skip to main content
Log in

Numerical investigation of flow around circular cylinder with splitter plate

  • Water Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The flow around a single circular cylinder with splitter plate was investigated using Computational Fluid Dynamics. The present study investigated the effects of varying splitter plate length and the Reynolds numbers on flow characteristic, such as vortex shedding, drag force, lift force, separation point, pressure, and friction coefficients of the cylinder. It was revealed that the vortex shedding behind cylinder is completely suppressed when the splitter plate length is longer than the critical value, which is proportional to the Reynolds number. The variation of drag and lift coefficients with respect to splitter length can be classified into two patterns of a monotonic decrease and a general decrease but with small increase. We found that the first pattern occurs at Reynolds number ≤ 180 and higher Reynolds number gives the second pattern. When the splitter plate length is similar to the diameter of the cylinder, the vortex frequency, drag, and lift coefficients reach local minimum depending on the Reynolds number. A functional relationship between drag coefficient, length of splitter plate, and Reynolds number was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akilli, H., Krakus, C., Akar, A., Sahin, B., and Tumen, N. F. (2008). “Control of vortex shedding of circular cylinder in shallow water flow using an attached splitter plate.” Journal of Fluids Engineering, Vol. 130, No. 4, pp. 041401.1-11, DOI: 10.1115/1.2903813.

  • Anderson, A. and Szewczyk, A. A. (1997). “Effects of a splitter plate on the near wake of a circular cylinder in 2 and 3 dimensional Flow configuration.” Experiments in Fluids, Vol. 23, No. 2, pp. 161–174, DOI: 10.1007/s003480050098. ANSIS (2010). ANSIS Fluent theory guide, Canonsburg, Pennsylvania, USA.

    Article  Google Scholar 

  • Apelt, C. J., West, G. S., and Szewczyk, A. A. (1973). “The effects of wake splitter plates on the flow past a circular cylinder in the range 104 < Re < 5×104.” Journal of Fluid Mechanics, Vol. 61, No. 1, pp. 187–198, DOI: 10.1017/S0022112073000649.

    Article  Google Scholar 

  • Apelt, C. J. and West, G. S. (1975). “The effects of wake splitter plates on bluff-body flow in the range 104 < Re < 5×104. Part 2.” Journal of Fluid Mechanics, Vol. 71, No. 1, pp. 145–160, DOI: 10.1017/S0022112075002479.

    Article  Google Scholar 

  • Bandyopadhyay, P. R. (1986). “Aspects of the equilibrium puff in transitional pipe flow.” Journal of Fluid Mechanics, Vol. 163, pp. 439–458, DOI: 10.1017/S0022112086002379.

    Article  Google Scholar 

  • Behzad, G. D. and Hamed, H. J. (2010). “On the suppression of vortex shedding from circular cylinders using detached short splitterplates.” Journal of Fluids Engineering, Vol. 132, No. 4, (044501). DOI: 10.1115/1.4001384.

    Article  Google Scholar 

  • Byko, M. (2002). “Materials give roller coaster enthusiasts a reason to scream.” Journal of the Minerals, Metals, & Material Society, Vol. 54, No. 5, pp. 16–20, TMS Publications.

    Article  Google Scholar 

  • Chang, Y. S., Hwang, J. H., and Park, Y. G. (2015). “Numerical simulation of sediment particles released at the edge of the viscous sublayer in steady and oscillating turbulent boundary layers.” Journal of Hydroenvironment Research, Vol. 9, No. 1, pp. 36–48, DOI: 10.1016/j.jher.2013.07.002.

    Google Scholar 

  • Cimbala, J. M. and Garg, S. (1990). “Flow in the wake of a freely rotatable cylinder with splitter plate.” AIAA Journal, Vol. 29, No. 6, pp. 1001–1003, DOI: 10.2514/3.10692.

    Article  Google Scholar 

  • Dehkordi, B. R. and Jafari, H. H. (2010). “On the suppression of vortex shedding from circular cylinders using detached short splitter–plates.” Journal of Fluids Engineering, Vol. 132, No. 04, pp. 044501–1:4, DOI: 10.1115/1.4001384.

    Article  Google Scholar 

  • Ding, H., Shu, C., Yeo, K. S., and Xu, D. (2007). “Numerical simulation of flows around two circular cylinders by mesh-free least square based finite difference methods.” International Journal for numerical method in fluids, Vol. 53, No. 2, pp. 305–332, DOI: 10.1002/fld.1281.

    Article  MATH  Google Scholar 

  • Fey, U., Konig, M., and Eckelman, H. (1998). “A new Strouhal–Reynoldsnumber relationship for the circular cylinder in the range 47 < Re < 2×105.” Physics of Fluid, Vol. 10, No. 7, pp. 1547–1549, DOI: 10.1063/1.869675.

    Article  Google Scholar 

  • Fox, R. W., Mcdonald, A. T., and Pritchard, P. J. (2008). Introduction to fluid mechanics (SI version), 7th ed., John Wiley & Sons, New Work, USA.

    MATH  Google Scholar 

  • Gerrard, J. H. (1966). “The mechanics of the formation region of vortices behind bluff bodies.” Journal of Fluid Mechanics, Vol. 25, No. 2, pp. 401–413, DOI: 10.1017/S0022112066001721.

    Article  Google Scholar 

  • Goswami, I., Scanlan, R. H., and Jones, N. P. (1992). “Vortex shedding from circular cylinders: Experimental data and a new model.” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 41, Nos. 1-3, pp. 763–774, DOI: 10.1016/0167-6105(92)90495-V.

    Article  Google Scholar 

  • Grove, A. S., Shair, F. H., Petersen, E. E., and Acrivos, A. (1964). “An experimental investigation of the steady separated flow past a circular cylinder.” Journal of Fluid Mechanics, Vol. 19, No. 1, pp. 60–80, DOI: 10.1017/S0022112064000544.

    Article  MATH  Google Scholar 

  • Harichandan, A. B. and Roy, A. (2010). “Numerical investigation of low Reynolds number flow past two and three circular cylinders using unstructured grid CFR scheme.” International Journal of Heat and Fluid Flow, Vol. 31, No. 2, pp. 154–171, DOI: 10.1016/j.ijheatfluidflow.2010.01.007.

    Article  Google Scholar 

  • Hwang, J. H., Yamazaki, H., and Rehmann, C. R. (2006). “Buoyancy generated turbulence in stably stratified flow with shear.” Physics of Fluids, Vol 18, No. 4, pp. 045104:1-13, DOI: 10.1063/1.2193472.

    Article  Google Scholar 

  • Hwang, J. Y. and Yang, K. S. (2007). “Drag reduction on a circular cylinder using dual detached splitter-plates.” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 95, No. 7, pp. 551–564, DOI: 10.1016/j.jweia.2006.11.003.

    Article  Google Scholar 

  • Jain, P. C. and Goel, B. S. (1976). “Shedding of vortices behind a circular cylinder.” Computer and Fluids, Vol. 4, Nos. 3-4, pp. 137–142, DOI: 10.1016/0045-7930(76)90002-5.

    Article  MATH  Google Scholar 

  • Kumar, B. and Mittal, S. (2006). “Prediction of the critical Reynolds number for flow past a circular cylinder.” Computer Methods in Applied Mechanics and Engineering, Vol. 195, Nos. 44-47, pp. 6046–6058, DOI: 10.1016/j.cma.2005.10.009.

    Article  MATH  Google Scholar 

  • Kundu, P. K. (1990). Fluid mechanics, 2nd ed. Academic Press. San Diego, pp. 319–332.

    Google Scholar 

  • Kwai, H. (1990). “Discrete vortex simulation for flow around a circular cylinder with a splitter plate.” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 33, Nos. 1-2, pp. 153–160, DOI: 10.1016/0167-6105(90)90031-7.

    Article  Google Scholar 

  • Kwon, K. K. and Choi, H. (1996). “Control of laminar vortex shedding behind a circular cylinder using splitter plates.” Physics of Fluid, Vol. 8, No. 2, pp. 479–486, DOI: 10.1063/1.868801.

    Article  MATH  Google Scholar 

  • Lam, K., Gong, W. Q., and So, R. M. C. (2008). “Numerical simulation of cross flow around four cylinders in–line square configuration.” Journal of Fluids and Structures, Vol. 24, No. 1, pp. 34–57, DOI: 10.1016/j.jfluidstructs.2007.06.003.

    Article  Google Scholar 

  • Liu, C., Zheng, X., and Sung, C. H. (1998). “Preconditioned multigrid methods for unsteady incompressible flow.” Journal computational Physics, Vol. 139, No. 1, pp. 35–57, DOI: 10.1006/jcph.1997.5859.

    Article  MATH  Google Scholar 

  • Lixia, Q., Norberg, C., Davidson, L., Peng, S. H., and Wang, F. (2013). “Quantitative numerical analysis of flow past a circular cylinder at Reynolds number between 50 and 200.” Journal of Fluids and Structures, Vol. 39, pp. 347–370, DOI: 10.1016/j.jfluidstructs.2013. 02.007.

    Article  Google Scholar 

  • Mahir, N. and Altac, Z. (2008). “Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements.” International Journal of Heat and Fluid flow, Vol. 29, No. 5, pp. 1309–1318, DOI: 10.1016/j.ijheatfluidflow.2008.05.001.

    Article  Google Scholar 

  • Meneghini, J. R. and Saltara, F. (2001). “Numerical simulation of flow interference between two circular cylinders in tandem and side by side arrangements.” Journal of Fluids and Structure, Vol. 15, No. 2, pp. 327–350, DOI: 10.1006/jfls.2000.0343.

    Article  Google Scholar 

  • Mittal, S. and Raghuvanshi, A. (2001). “Control of vortex shedding behind circular cylinder for flows at low Reynolds numbers.” International Journal for numerical methods in fluids, Vol. 35, No. 04, pp. 421–447, DOI: 10.1002/1097-0363(20010228)35:4<421::AID-FLD100> 3.0.CO;2-M.

    Article  MATH  Google Scholar 

  • Mukundan, H. (2008). Vortex-induced vibration of marine risers: motion and force reconstruction from field and experimental data, PhD Thesis, Massachusetts Institute of Technology. Dept. of Mechanical engineering.

    Google Scholar 

  • Noberg, C. (2003). “Fluctuating lift on a circular cylinder: review and new measurements.” Journal of Fluids and Structures, Vol. 17, No. 1, pp 57–96, DOI: 10.1016/S0889-9746(02)00099-3.

    Article  Google Scholar 

  • Ozono, S. (1999). “Flow control of vortex shedding by a short splitter plate asymmetrically arranged downstream of a cylinder.” Physics of Fluids, Vol. 11, No. 10, pp. 2928–2934, DOI: 10.1063/1.870151.

    Article  MATH  Google Scholar 

  • Park, J., Kwon, K., and Choi, H. (1998). “Numerical solution of flow past a circular cylinder at Reynolds numbers up to 160.” KSME International Journal, Vol. 12, pp. 1200–1205, DOI: 10.1007/BF02942594.

    Google Scholar 

  • Ribeiro, P. A. R., Schettini, E. B. C., and Silvestrini, J. H. (2002). “Bluffbodies vortex shedding suppression by direct numerical simulation.” Brazilian congress of thermal engineering and sciences, CIT02-0863.

    Google Scholar 

  • Roshko, A. (1955). “On the wake and drag of bluff bodies.”Journal of the Aeronautical Sciences (Institute of the Aeronautical Sciences), Vol. 22, No. 2, pp. 124–132, DOI: 10.2514/8.3286.

  • Sa, J. Y. and Chang, K. S. (1991). “Shedding patterns of the near-wake vortices behind a circular cylinder.” Internal Journal for Numerical methods in Fluids, Vol. 12, No. 5, pp. 463–474, DOI: 10.1002/fld.1650120504.

    Article  MATH  Google Scholar 

  • Seo, I. W. and Song, C. G. (2012). “Numerical simulation of laminar flow past a circular cylinder with slip conditions.” International Journal for Numerical Methods in Fluids, Vol. 68, No. 12, pp. 1538–1560, DOI: 10.1002/fld.2542.

    Article  MathSciNet  MATH  Google Scholar 

  • Sharman, B., Lien, F. S., Davidson, L., and Norberg, C. (2005). “Numerical predictions of low Reynolds number flow over two tandem circular cylinders.” International Journal for numerical Method in Fluids, Vol. 47, No. 5, pp. 423–447, DOI: 10.1002/fld.812.

    Article  MATH  Google Scholar 

  • Strykowski, P. J. and Sreenivasan, K. R. (1990). “On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers.” Journal of Fluid Mechanics, Vol. 218, pp. 71–107, DOI: 10.1017/S0022112090000933.

    Article  Google Scholar 

  • Su, M. and Kang, Q. (1999). “Large eddy simulation of the turbulent flow around a circular cylinder at sub-critical Reynolds numbers.” ACTA MechanicaSinica, Vol. 31, pp.100–105.

    Google Scholar 

  • Sumner, D. (2010). “Two circular cylinders in cross-flow: A review.” Journal of Fluids and Structures, Vol. 26, No. 6, pp. 849–899, DOI: 10.1016/j.jfluidstructs.2010.07.001.

    Article  Google Scholar 

  • Surmas, R., Santos, O. E., and Philippi, P. C. (2004). “Lattice Boltzmann simulation of the flow interference in bluff body wakes.” Future Generation Computer System, Vol. 20, No. 6, pp. 951–958, DOI: 10.1016/j.future.2003.12.007.

    Article  Google Scholar 

  • Taamneh, Y. (2011). “CFD simulations of drag and separation flow around ellipsoids.” Jordan Journal of Mechanical and Industrial Engineering, Vol. 5, No. 2, pp. 12–132.

    Google Scholar 

  • Tritton, D. J. (1959). “Experiments on the flow past a circular at low Reynolds numbers.” Journal of Fluid Mechanics, Vol. 6, No. 4, pp. 547–567, DOI: 10.1017/S0022112059000829.

    Article  MATH  Google Scholar 

  • Vu, H. C. and Hwang, J. H. (2014). Flow separation around single circular cylinder at low Reynolds numbers, 40th KSCE Conferences, pp 1237–1238.

    Google Scholar 

  • Vu, H. C., Ahn, J., and Hwang, J. H. (2015). Numerical simulation of flow past two circular cylinders in tandem and side-by-side arrangement at low Reynolds numbers, KSCE Journal of Civil Engineering, (published online), DOI: 10.1007/s12205-015-0602-y.

    Google Scholar 

  • Wanderley, J. B. V. and Levi, C. A. (2002). “Validation of finite difference method for the simulation of vortex-induced vibration on a circular cylinder.” Ocean Engineering, Vol. 29, No. 4, pp. 445–460, DOI: 10.1016/S0029-8018(01)00014-2.

    Article  Google Scholar 

  • White, B. L. and Nepf, H. M. (2003). “Scalar transport in random cylinder arrays at moderate Reynolds number.” Journal of Fluid Mechanics, Vol. 487, pp. 43–79, DOI: 10.1017/S0022112003004579.

    Article  MATH  Google Scholar 

  • Williamson, C. H. K. (1989). “Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers.” Journal of Fluid Mechanics, Vol. 206, pp. 579–627, DOI: 10.1017/S0022112089002429.

    Article  Google Scholar 

  • Williamson, C. H. K. (1996). “Vortex dynamics in cylinder wake.” Journal of Fluid Mechanics, Vol. 28, No. 1, pp. 477–526, DOI: 10.1146/annurev.fl.28.010196.002401.

    Article  MathSciNet  Google Scholar 

  • Wu, M. H., Wen, C. Y., Yen, R. H., Weng, M. C., and Wang, A. B. (2004). “Experimental and numerical study of the separation angle for flow around a circular at low Reynolds number.” Journal of Fluid Mechanics, Vol. 515, pp. 233–260, DOI: 10.1017/S0022112004000436.

    Article  MATH  Google Scholar 

  • Zhang, J. and Dalton, C. (1998). “A three-dimensional simulation of a steady approach ow past a circular cylinder at low Reynolds number.” International Journal of Numerical Methods in Fluids, Vol. 26, No. 9, pp. 1003–1022, DOI: 10.1002/(SICI)1097-0363 (19980515) 26:9 <1003::AID-FLD611>3.0.CO;2-W.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungkyu Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, H.C., Ahn, J. & Hwang, J.H. Numerical investigation of flow around circular cylinder with splitter plate. KSCE J Civ Eng 20, 2559–2568 (2016). https://doi.org/10.1007/s12205-015-0209-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0209-3

Keywords

Navigation