Skip to main content
Log in

Parametric study on cutoff performance of soil-bentonite slurry wall: Consideration of construction defects and bentonite cake

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Bentonite cake is commonly fabricated on trench surfaces that is originated from bentonite slurry during trench excavation for slurry wall construction. Construction defects in the soil-bentonite slurry wall such as insufficient keying to less permeable strata and highly permeable “windows” also may occur due to inappropriate construction procedures or improperly mixed soil-bentonite backfill. In this study, separate numerical models were developed to simulate the groundwater flow and contaminant transport through the soil-bentonite slurry walls of typical geometries with consideration of the bentonite cake and/or construction defects. Results of the groundwater simulations showed that the bentonite cake has no effect in the key insufficient cases. In the keyed wall cases, the bentonite cake with very low hydraulic conductivity significantly impedes groundwater flow through the wall. The presence of bentonite cake not only remedies the “window” defects but also renders the wall construction more effective in sealing the groundwater flow. In terms of contaminant transport, the steady-state normalized flux of a hypothetical non-reactive contaminant through the wall can be reduced by 13% to 62% along with the presence of bentonite cake in the most critical scenario. For the typical inorganic and organic (i.e., cadmium and toluene) contaminant transports, the bentonite cake can lessen the steady-state mass flux by 16% to 20% through a unit length of the slurry wall. These results show the significance of bentonite cake in a soil-bentonite slurry wall construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benson, C. H. and Lee, T. Y. (2000). Partition coefficients between volatile organic compounds and bentonite from geosynthetic clay liners, Environmental Geotechnics Rep. No. 00-5, Univ. of Wisconsin-Madison, Madison, Wisconsin.

    Google Scholar 

  • Britton, J. P., Filz, G. M., and Herring, W. E. (2004). “Measuring the hydraulic conductivity of soil-bentonite backfill.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 130, No. 12, pp. 1250–1258, DOI: 10.1061/(ASCE)1090-0241(2004)130:12(1250).

    Article  Google Scholar 

  • Britton, J. P., Filz, G. M., and Little, J. C. (2005). “The effect of variability in hydraulic conductivity on contaminant transport through soil-bentonite cutoff walls.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 8, pp. 951–957, DOI: 10.1061/(ASCE)1090-0241(2005)131:8(951).

    Article  Google Scholar 

  • Chung, J. and Daniel, D. E. (2008). “Modified fluid loss test as an improved measure of hydraulic conductivity for bentonite.” Geotechnical Testing Journal, ASTM, Vol. 31, No. 3, pp. 243–251.

    Google Scholar 

  • Danckwerts, P. V. (1953). “Continuous flow systems: Distribution of residence times.” Chemical Engineering Science, Chemical Engineering, Vol. 2, No. 1, pp. 1–13, DOI: 10.1016/0009-2509(53)80001-1.

    Article  Google Scholar 

  • Daniel, D. E. and Choi, H. (1999). “Hydraulic conductivity evaluation of vertical barrier walls.” Geo-engineering for Underground Facilities, Fernandez, G. and Bauev, R. A., Ed., ASCE, Reston, Virginia, pp. 140–161.

    Google Scholar 

  • Daniel, D. E. and Koerner, R. M. (1995). Waste containment facilities: Guidance for construction, quality assurance and quality control of liner and cover systems, ASCE Press, New York, N.Y.

    Google Scholar 

  • D’Appolonia, D. J. (1980). “Soil-bentonite slurry trench cutoffs.” Journal of Geotechnical Engineering, ASCE, Vol. 106, No. 4, pp. 399–417.

    Google Scholar 

  • Edil, T. B., Wambold, W. S., and Park, J. K. (1995). “Partitioning of VOCs in clay liner materials.” Geoenvironment 2000 (GSP 46): Characterization, Containment, Remediation, and Performance in Environmental Geotechnics, Y. B. and Daniel, D. E., Ed., Vol. 1, ASCE, New York, N.Y., pp. 775–790.

    Google Scholar 

  • Evans, J. C. (1991). “Geotechnics of hazardous waste control systems.” Foundation Engineering Handbook- 2nd Edition, Fang, H. Y., Ed., Vol. 2, Van Nostrand Reinhold Company, New York, N.Y., pp. 750–777.

    Article  Google Scholar 

  • Evans, J. C. (1993). “Vertical cutoff walls.” Geotechnical Practice for Waste Disposal, Chapman and Hall, London, U.K., pp. 430–454.

    Chapter  Google Scholar 

  • Evans, J. C. (1994). “Hydraulic conductivity of vertical cutoff walls.” Proceeding of Hydraulic Conductivity and Waste Contaminant Transport in Soils, ASTM STP 1142, Daniel, D. E. and Trautwein, S. J., Ed., ASTM, Philadelphia, pp. 79–94.

    Google Scholar 

  • Filz, G. M. and Mitchell, J. (1995). “Design, construction, and performance of soil- and cement-based vertical barriers.” Assessment of Barrier Containment Technologies: A Comprehensive Treatment for Environmental Remediation Applications, Rumer, R. and Mitchell, J., Ed., John Wiley and Sons, New York, N.Y., pp. 45–75.

    Google Scholar 

  • Filz, G. M., Boyer, R. D., and Davidson, R. R. (1997). “Bentonite-water slurry rheology and cutoff wall trench stability.” Proceedings of In Situ Remediation of the Geoenvironment, GSP No. 71, Evans, J. C., Ed., ASCE, New York, N.Y., pp. 139–153.

    Google Scholar 

  • Foose, G. J. (1997). Leakage rates and chemical transport through composite liners, PhD Thesis, Univ. of Wisconsin-Madison, Wisconsin.

    Google Scholar 

  • Foose, G. J. and Vonderembse, G. (2001). “Contaminant transport through composite geomembrane-soil-bentonite cut-off walls.” Proceeding of International Containment and Remediation Technology Conference, U.S. DOE, U.S. EPA, and DuPont Co.

    Google Scholar 

  • Freeze, R. A. and Cherry, J. A. (1979). Groundwater, Prentice-Hall, Englewood Cliffs, N. J.

    Google Scholar 

  • Gillham, R. W., Robin, M. J. L., Dytynyshyn, D. J., and Johnston, H. M. (1984). “Diffusion of nonreactive and reactive solutes through finegrained barrier materials.” Canadian Geotechnical Journal, Vol. 21, No. 3, pp. 541–550, DOI: 10.1139/t84-056

    Article  Google Scholar 

  • Griffin, R. A., Roy, W. R., and Krapac, I. G. (1986). “Batch type 24-hour distribution ratio for contaminant adsorption by soil material.” Proceedings of 3rd International Symposium on Industrial and Hazardous Waste Testing and Disposal (STP 933), D. Lorenzen, Ed., ASTM, Philadelphia, pp. 390–408.

    Google Scholar 

  • Harbaugh, A. W. (2005). MODFLOW-2005, the U.S. geological survey modular ground-water model— the ground-water flow process: U.S. geological survey techniques and methods 6-A16, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Henry, L. B., Filz, G. M., and Davidson, R. R. (1998). “Formation and properties of bentonite filter cakes.” Proceedings of Geo-Congress 98, Filtration and Drainage in Geotechnical/Geoenvironmental, GSP 78, Reddi, L. N. and Bonala, M. V. S., Ed., ASCE, Virginia, pp. 69–88.

    Google Scholar 

  • Johnson, R. L., Cherry, J. A., and Pankow, J. F. (1989). “Diffusive contaminant transport in natural clay: A field example and implications for clay-lined waste disposal sites.” Environmental Science and Technology, ACS, Vol. 23, No. 3, pp. 340–349, DOI: 10.1021/es00180a012.

    Article  Google Scholar 

  • Johnston, H., Gillham, R., Robin, M., Sharma, H., and Wilmot, D. (1984). Evaluation of diffusion coefficients for Strontium in buffer materials, Report No. 84-298-K, Ontario Hydro Research Division, Ontario, Canada

    Google Scholar 

  • Khandelwal, A., Rabideau, A. J., and Shen, P. (1998). “Analysis of diffusion and sorption of organic solutes in soil-bentonite barrier materials.” Environmental Science & Technology, ACS, Vol. 32, No. 9, pp. 1333–1339, DOI: 10.1021/es9702024

    Article  Google Scholar 

  • Khoury, M. A., Fayad, P. H., and Ladd, R. S. (1992). “Design, construction and performance of a soil-bentonite cutoff wall constructed in two stages.” Slurry wall: Design, construction, and quality control, STP 1129, Paul, D. B., Davidson, R. R., and Cavalli, N. J., Ed., ASTM, Philadelphia, pp. 289–308.

    Chapter  Google Scholar 

  • Koerner, R. (1985). Construction and geotechnical methods in foundation engineering, McGraw-Hill Inc., New York, N.Y.

    Google Scholar 

  • LaGrega, M., Buckingham, P., and Evans, J. (1994). Hazardous waste management, McGraw-Hill Inc., New York, N.Y.

    Google Scholar 

  • Lake, C. B. and Rowe, R. K. (2005). “A comparative assessment of Volatile Organic Compound (VOC) sorption to various types of potential GCL bentonites.” Geotextiles and Geomembranes, IGS, Vol. 23, No. 4, pp. 323–347, DOI: 10.1016/j.geotexmem.2005.01.001.

    Article  Google Scholar 

  • Lee, T. and Benson, C. (2000). “Flow past bench-scale vertical groundwater cutoff walls.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 8, pp. 511–520, DOI: 10.1061/(ASCE)1090-0241(2000)126:6(511).

    Article  Google Scholar 

  • Li, Y.-H. and Gregory, S. (1974). “Diffusion of ions in sea water and in deep-sea sediments.” Geochimica et Cosmochimica Acta, Vol. 38, No. 5, pp. 703–714, DOI: 10.1016/0016-7037(74)90145-8.

    Article  Google Scholar 

  • Lo, I. M. C., Luk, A. F. T., and Yang, X. (2004). “Migration of heavy metals in saturated sand and bentonite/soil admixture.” Journal of Environmental Engineering, ASCE, Vol. 130, No. 8, pp. 906–909, DOI: 10.1061/(ASCE)0733-9372(2004)130:8(906).

    Article  Google Scholar 

  • McDonald, M. G. and Harbaugh, A. W. (1988). A modular threedimensional finite-difference ground-water flow model. Techniques of water-resources investigations of the United States geological survey, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Montgomery, J. H. (2007). Groundwater chemicals desk reference, 4th ed. CRC Press, Boca Raton, Florida.

    Book  Google Scholar 

  • Nash, K. L. (1974). “Stability of trenches filled with fluids.” Journal of the Construction Division, ASCE, Vol. 100, No. 4, pp. 533–542.

    Google Scholar 

  • Neville, C. J. and Andrews, C. B. (2006). “Containment criterion for contaminant isolation by cutoff walls.” Ground Water, Vol. 44, No. 5, pp. 682–686, DOI: 10.1111/j.1745-6584.2006.0023.5.

    Google Scholar 

  • Nguyen, T.-B. (2011). Performance of soil-bentonite slurry walls: Flow rates and contaminant containment, PhD Thesis, Korea University, Seoul, Republic of Korea.

    Google Scholar 

  • Nguyen, T. B., Lee, C., Ahn, Y., and Choi, H. (2009). “Hydraulic conductivity evaluation of vertical cutoff walls bearing filter cake from slug test analysis.” Proceedings of International Symposium on Geoenvironmental Engineering, Chen, Y., Tang, X., and Zhan, L., Ed., Zhejiang University, Hangzhou, P. R. of China, pp. 666–671.

    Google Scholar 

  • Nguyen, T.-B., Lee, C., and Choi, H. (2010). “Estimation of hydraulic conductivity of bentonite filter cake in laboratory.” Proceedings of 6th International Congress on Environmental Geotechnics, Datta, M., Srivastava, R. K., Ramana, R. K., and Sahu, J. T., Ed., McGraw-Hill, New Delhi, India, pp. 1393–1396.

    Google Scholar 

  • Park, J. K., Kim, J. Y., Madsen, C. D., and Edil, T. B. (1997). “Retardation of volatile organic compound movement by a soil-bentonite slurry cutoff wall amended with ground tires.” Water Environment Research, Water Environment Federation, Vol. 69, No. 5, pp. 1022–1031, DOI: 10.2175/106143097X125722.

    Article  Google Scholar 

  • Poletto, R. and Good, D. (1997). “Slurry walls and slurry trenches-Construction quality control.” Proceeding of International Containment and Remediation Technology Conference, U.S. DOE, U.S. EPA, and DuPont Co., pp. 45–51.

    Google Scholar 

  • Rabideau, A. J. and Khandelwal, A. (1998a). “Boundary conditions for modeling transport in vertical barriers.” Journal of Environmental Engineering, ASCE, Vol. 124, No. 11, pp. 1135–1139, DOI: 10.1061/(ASCE)0733-9372(1998)124:11(1135).

    Article  Google Scholar 

  • Rabideau, A. J. and Khandelwal, A. (1998b). “Nonequilibrium sorption in soil-bentonite barriers.” Journal of Environmental Engineering, ASCE, Vol. 124, No. 4, pp. 329–335, DOI: 10.1061/(ASCE)0733-9372(1998)124:4(329).

    Article  Google Scholar 

  • Rowe, R. K. and Booker, J. R. (1985). “1-D pollutant migration in soils of finite depth.” Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 4, pp. 479–499, DOI: 10.1061/(ASCE)0733-9410(1985)111:4(479).

    Article  Google Scholar 

  • Rowe, R. K., Lake, C., von Maubeuge, K., and Stewart, D. (1997). “Implications of diffusion of chloride through geosynthetic clay liners.” ai]Proceedings of Geoenvironment’ 97, Bouazza, A., Kodikara, J., and Parker, R. J., Ed., Taylor & Francis, Melbourne, Australia, pp. 295–300.

    Google Scholar 

  • Ryan, C. (1987). “Vertical barriers in soil for pollution containment.” Geotechnical Practice for Waste Disposal’ 87, GSP 13, R. Woods, Ed., ASCE, Virginia, pp. 182–204.

    Google Scholar 

  • Shackelford, C. D. (1988). Diffusion of inorganic chemical wastes in compacted clay, PhD Thesis, University of Texas, Austin, TX, United States of America.

    Google Scholar 

  • Shackelford, C. D. and Daniel, D. E. (1991). “Diffusion in saturated soil I: Background.” Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 3, pp. 467–484, DOI: 10.1061/(ASCE)0733-9410(1991)117:3(467).

    Article  Google Scholar 

  • Soroush, A. and Soroush, M. (2005). “Parameters affecting the thickness of bentonite cake in cutoff wall construction: Case study and physical modeling.” Canadian Geotechnical Journal, CGS, Vol. 42, No. 2, pp. 646–654, DOI: 10.1139/t04-090.

    Article  MathSciNet  Google Scholar 

  • Tachavises, C. and Benson, C. (1997a). “Flow rates through earthen, geomembrane, and composite cut-off walls.” Proceeding of International Containment and Remediation Technology Conference, U.S. DOE, U.S. EPA, and DuPont Co., pp. 945–953.

    Google Scholar 

  • Tachavises, C. and Benson, C. (1997b). “Hydraulic importance of defects in vertical groundwater cutoff walls.” In Situ Remediation of the Geoenvironment, GSP No. 71, Evans, J., Ed., ASCE, Reston, pp. 168–180.

    Google Scholar 

  • US ACE (2010). Guide specification for construction soil-bentonite (SB) slurry trench, UFGS-02 35 27.

    Google Scholar 

  • US EPA (1984). Slurry trench construction for pollution migration control, EPA/540/2/84-001.

    Google Scholar 

  • Van Genuchten, M. T. and Alves, W. J. (1982). Analytical solutions of the one-dimensional convective-dispersive solute transport equation, U.S. Salinity Laboratory, Technical Bulletin Number 1661, Riverside, California, 149 pp.

    Google Scholar 

  • Xanthakos, P. P. (1994). Slurry walls as structural system, McGraw-Hill, New York, N.Y.

    Google Scholar 

  • Zheng, C. (2006). MT3DMS v5.2, A modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems — Supplemental User’s guide, Technical report, U.S. Army Engineer Research and Development Center, Vicksburg, MS.

    Google Scholar 

  • Zheng, C. (2010). MT3DMS v5.3 Supplemental user’s guide. Technical Report, U.S. Army Engineer Research and Development Center, University of Alabama, Tuscaloosa, Alabama.

    Google Scholar 

  • Zheng, C. and Wang, P. P. (1999). MT3DMS: A modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems — Documentation and user’s guide, Contract report SERDP-99-1, U.S. Army Engineer Research and Development Center, Vicksburg, MS.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hangseok Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, HJ., Nguyen, TB., Lim, J. et al. Parametric study on cutoff performance of soil-bentonite slurry wall: Consideration of construction defects and bentonite cake. KSCE J Civ Eng 19, 1681–1692 (2015). https://doi.org/10.1007/s12205-014-1171-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-014-1171-1

Keywords

Navigation