Skip to main content
Log in

Inhibitory effects of inorganic and organic coagulants on acidogenic fermentation

  • Environmental Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The objective of this study is to evaluate the inhibitory effect of inorganic and organic coagulant on acidogenic fermentation in municipal wastewater treatment plant. It was found that the conversion from organic matter to Volatile Fatty Acid (VFA) decreased more than 10% when the dosages of coagulant exceeded 46 mg-Al/L and 120 mg-Fe/L. Inhibitory effect by Al on acidogenic fermentation was greater than that by Fe. When the dosage of organic polymer was over 102 mg/L, the VFA conversion fell to below 2%. Ultrasonic treatment could increase the VFA conversion for coagulated sludge for all the coagulants tested (over 12%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, Z., Ivanov, V., Hyun, S. H., Cho, K. M., and Kim, I. S. (2001) “Effect of divalent iron on methanogenic fermentation of fat-containing wastewater.” Environ. Eng. Res., Vol. 6, No. 3, pp. 139–146.

    Google Scholar 

  • APHA, AWWA, and WEF (1998). Standard methods for the examination of water and wastewater, 20th Ed., American Public Health Association, WA.

    Google Scholar 

  • ASM (American Society for Microbiology) (2008). Oxidation-fermentation test protocol, American Society for Microbiology, http://www.microbelibrary.org/component/resource/laboratory-test/3151-oxidativefermentative-test-protocol.

    Google Scholar 

  • Bache, D. H. and Gregory, R. (2007). Flocs in water treatment, IWA Publishing, London.

    Google Scholar 

  • Baillod, C., Cressey, G., and Beaupre, R. (1977). “Influence of phosphorus removal on solids budget.” J. Water Poll: Control Fed., Vol. 49, No. 1, pp. 131–144.

    Google Scholar 

  • Brown, J. and Little, L. (1977). Method for improvement of trickling filter plant performance-Part II: Chemical addition, National Technical Information Service, Accession No. PB, Springfield, VA.

    Google Scholar 

  • Chiang, C. L., Chang, R. C., and Chiu, Y. C. (2007). “Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen.silicon/phosphorus by sol-gel method.” Thermochim. Acta, Vol. 453, No. 2, pp. 97–104, DOI: 10.1016/j.tca.2006.11.013.

    Article  Google Scholar 

  • Dentel, S. K. and Gossett, J. M. (1988). “Mechanisms of coagulation with aluminium salts.” J. Am. Water Works Ass., Vol. 80, No. 4, pp. 187–198.

    Google Scholar 

  • Dentel, S. K., Resta, J. J., Shetty, P. V., and Bober, T. A. (1988). “Selecting coagulant, filtration and sludge-conditioning aids.” J. Am. Water Works Ass., Vol. 80, No. 1, pp. 72–84.

    Google Scholar 

  • Dey, U., Mondal, N. K., Das, K., and Dutta, S. (2012). “An approach to polymer degradation through microbes.” IOSR J. Pharm., Vol. 2, No. 3, pp. 385–388, DOI: 10.9790/3013-0230385388.

    Google Scholar 

  • Elefsiniotis, P. and Oldham, W. K. (1994). “Anaerobic acidogenesis of primary sludge: The role of solids retention time.” Biotech. Bioeng., Vol. 44, No. 1, pp. 7–13.

    Article  Google Scholar 

  • Elefsiniotis, P., Wareham, D. G., and Smith, M. O. (2004). “Use of volatile fatty aicds from an acid-phase digester for denitrification.” J. Biotechnol., Vol. 114, No. 3, pp. 289–297, DOI: 10.1016/j.bbr.2004.02.016.

    Article  Google Scholar 

  • EPA (Environmental Protection Agency) (1976). Process design manual for phosphorous removal, EPA 625/1-76-001a.

    Google Scholar 

  • Ghyoot, W. and Verstrate, W. (1997). “Anaerobic digestion of primary sludge from chemical pre-precipitation.” Wat. Sci. Technol., Vol. 36, Nos. 6–7, pp. 357–365.

    Article  Google Scholar 

  • Gossett, J. M., McCarty, P. L., Wilson, J. C., and Evans, D. S. (1978). “Anaerobic digestion of sludge from chemical treatment.” J. Water Poll. Control Fed., Vol. 50, No. 3, pp. 533–542.

    Google Scholar 

  • Guan, X. H., Chen, G. H., and Shang, C. (2005). “Re-use of water treatment works sludge to enhance particulate pollutant removal from sewage.” Water Res., Vol. 39, No. 15, pp. 3433–3440, DOI: 10.1016/j.watres.2004.07.033.

    Article  Google Scholar 

  • Hsu, D. Y. and Pipes, W. O. (1973). “Aluminium hydroxide effects on wastewater processes.” J. Water Poll. Control Fed., Vol. 45, No. 4, pp. 681–697.

    Google Scholar 

  • Inanc, B., Matsui, S., and Ide, S. (1996). “Propionic acid accumulation and controlling factors in anaerobic treatment of carbonhydrate: effects of H2 and pH.” Water Sci. Technol., Vol. 34, Nos. 5–6, pp. 317–325.

    Article  Google Scholar 

  • Kim, J. O. (1999). Production efficiency and mechanism analysis of membrane-coupled anaerobic organic acid fermenter, PhD Thesis, Kyoto University, Japan.

    Google Scholar 

  • Okada, A. (1997). Development of carbon recovery process from precoagulated, MSc Thesis, Kyoto University, Japan.

    Google Scholar 

  • Özacar, M. and Sengil, I. A. (2003). “Effect of tannins on phosphate removal using alum.” Turkish J. Eng. Environ. Sci., Vol. 27, No. 4, pp. 227–236.

    Google Scholar 

  • Parkin, G. F. and Owen, W. F. (1987). “Fundamentals of anaerobic digestion of wastewater sludges.” J. Environ. Eng., Vol. 112, No. 5, 1986, pp. 867–920.

    Article  Google Scholar 

  • Pilli, S., Bhunia, P., Yan, S., LeBlanc, R. J., Tyaqi, R. D., and Surampalli, R. Y. (2011). “Ultrasonic pretreatment of sludge: A review.” Ultrason. Sonochem., Vol. 18, No. 1, pp. 1–18, DOI: 10.1016/j.ultsonch.2010.02.014.

    Article  Google Scholar 

  • Tetsuo, I. (1990). Waste treatment engineering-principle and application (in Japanese), Kiboutou Press, Tokyo.

    Google Scholar 

  • Yu, H., Zhu, Z., Hu, W., and Zhang, H. (2002). “Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures.” Int. J. Hydro. Energy, Vol. 27, Nos. 11–12, pp. 1359–1365, DOI: 10.1016/S0360-3199(02)00073-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwook Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JO., Chung, J. Inhibitory effects of inorganic and organic coagulants on acidogenic fermentation. KSCE J Civ Eng 19, 572–577 (2015). https://doi.org/10.1007/s12205-014-1034-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-014-1034-9

Keywords

Navigation