Skip to main content
Log in

Calcite precipitation by ureolytic plant (Canavalia ensiformis) extracts as effective biomaterials

  • Geotechnical Engineering
  • Technical Note
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

An extract of the indigenous plant jack bean (Canavalia ensiformis) was used to produce calcite, an effective biomaterial. The formation of calcite using this extract was compared, under stable conditions, to that using commercially available purified urease. Xray diffraction and scanning electron microscopy were employed to elucidate the mechanism of calcite formation from the crude plant extracts. The results revealed that urease in the jack bean crude extracts catalyzed the hydrolysis of urea in liquid-state cultures. The procedure described herein is a simple and useful method of calcite mineral precipitation that does not require cultivation of microorganisms or further purification of crude extracts. This study suggests that crude extracts of Canavalia ensiformis have the potential to be used in place of purified forms of urease during remediation of cracks and to increase the strength of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachmeier, K. L., Williams, A. E., Warmington, J. R., and Bang, S. S. (2002). “Urease activity in microbiologically-induced calcite precipitation.” Journal of Biotechnology, Vol. 93, No. 2, pp. 171–181.

    Article  Google Scholar 

  • Bang, S. S., Galinat, J. K., and Ramakrishnan, V. (2001). “Calcite precipitation induced by polyurethane immobilized Bacillus pasteurii.” Enzyme Microbial Technology, Vol. 28, Nos. 4–5, pp. 404–409.

    Article  Google Scholar 

  • Burbank, M. B., Weaver, T. J., Green, T., Williams, B., and Crawford, R. L. (2011). “Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils.” Geomicrobiology Journal, Vol. 28, No. 4, pp. 301–312.

    Article  Google Scholar 

  • Burbank, M. B., Weaver, T. J., Williams, B. C., and Crawford, R. L. (2012). “Urease activity of ureolytic bacteria isolated from six soils in which calcite was precipitated by indigenous bacteria.” Geomicrobiology Journal, Vol. 29, No. 4, pp. 389–395.

    Article  Google Scholar 

  • Castanier, S., Le Metayer-Levrel, G., and Perthuisot, J. P. (1999). “Cacarbonates precipitation and limestone genesis-the microbiogeologist point of view.” Sedimentary Geology, Vol. 126, No. 1–4, pp. 9–23.

    Google Scholar 

  • Das, N., Kayastha, A. M., and Malhotra, O. P., (1998). “Immobilization of urease from pigeonpea (Cajanus cajan L.) in polyacrylamide gels and calcium alginate beads.” Biotechnology and Applied Biochemistry, Vol. 27, No. 1. pp. 25–29.

    Article  Google Scholar 

  • Das, N., Kayastha, A. M., and Srivastava, P. K. (2002). “Purification and characterization of urease from dehusked pigeonpea (Cajanus cajan L.) seeds.” Photochemistry, Vol. 61, No. 5, pp. 513–521.

    Article  Google Scholar 

  • Deepak, S., Choonia, H. S., Sarode, D. D., and Lele, S. S. (2009). “Biocalcification by Bacillus pasteurii urease: A novel application.” Journal of Industrial Microbiology and Biotechnology, Vol. 36, No. 8, pp. 1111–1115.

    Article  Google Scholar 

  • DeJong, J. T., Fritzges, M. B., and Nsslein, K. (2006). “Microbially induced cementation to control sand response to undrained shear.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 11, pp. 1381–1392.

    Article  Google Scholar 

  • De Muynck, W., De Belie, N., and Verstraete, W. (2010). “Microbial carbonate precipitation in construction materials: A review.” Ecological Engineering, Vol. 36, No. 2, pp. 118–136.

    Article  Google Scholar 

  • Harkes, M. P., van Paassen, L. A., Booster, J. L., Whiffin, V. S., and van Loosdrecht, M. C. M. (2010). “Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement.” Ecological Engineering, Vol. 36, No. 2, pp. 112–117.

    Article  Google Scholar 

  • Hamdan, N., Kavazanjian Jr, E., and OíDonnell, S. (2013). “Carbonate cementation via plant derived urease.” Proceedings of 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, pp. 2489–2492.

    Google Scholar 

  • Kumar, S. and Kayastha, A. M. (2010). “Acetohydroxamic acid- A competitive inhibitor of urease from soybean “Glycine max.”” Journal of Proteins and Proteomics, Vol. 1, No. 1, pp. 3–8.

    Google Scholar 

  • Labana, S., Singh, O. V., Basu, A., Pandey, G., and Jain, R. K. (2005). “A microcosm study on bioremediation of p-nitrophenol-contaminated soil using Arthrobacter protophormiae RKJ100.” Applied Microbiology and Biotechnology, Vol. 68, No. 3, pp. 417–424.

    Article  Google Scholar 

  • Lee, B. D., Apel, W. A., and Walton, M. R. (2006). “Calcium carbonate formation by Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807.” Bioresource Technology, Vol. 97, No. 18, pp. 2427–2434.

    Article  Google Scholar 

  • Li, L., Qian, C., Cheng, L., and Wang, R. (2010). “A laboratory investigation of microbe-inducing CdCO3 precipitate treatment in Cd2+ contaminated soil.” Journal of Soils and Sediments, Vol. 10, No. 2, pp. 248–254.

    Article  Google Scholar 

  • Lloyd, A. B. and Sheaffe, M. J. (1973). “Urease activity in soils.” Plant and Soil, Vol. 39, No. 1, pp. 71–80.

    Article  Google Scholar 

  • McConnaughey, T. A. and Whelan, J. F. (1997). “Calcification generates protons for nutrient and bicarbonate uptake.” Earth-Science Reviews, Vol. 42, Nos. 1–2, pp. 95–117.

    Article  Google Scholar 

  • Mobley, H. L. and Hausinger, R. P. (1989). “Microbial ureases: Significance, regulation, and molecular characterization.” Microbiological Reviews, Vol. 53, No. 1, pp. 85–108.

    Google Scholar 

  • Mobley, H. L., Island, M. D., and Hausinger, R. P. (1995). “Molecular biology of microbial ureases.” Microbiological Reviews, Vol. 59, No. 3, pp. 451–480.

    Google Scholar 

  • Nam, I. H., Kim, Y. M., Murugesan, K., Jeon, J. R., Chang, Y. Y., and Chang, Y. S. (2008). “Bioremediation of PCDD/Fs-contaminated municipal solid waste incinerator fly ash by a potent microbial biocatalyst.” Journal of Hazardous Materials, Vol. 157, No. 1, pp. 114–121.

    Article  Google Scholar 

  • Nam, I. H., Kim, Y. M., Schmidt, S., and Chang, Y. S. (2006). “Biotransformation of 1,2,3-tri- and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin by Sphingomonas wittichii strain RW1.” Applied and Environmental Microbiology, Vol. 72, No. 1, pp. 112–116.

    Article  Google Scholar 

  • Nemati, M. and Voordouw, G. (2003). “Modification of porous media permeability, using calcium carbonate produced enzymatically in situ.” Enzyme and Microbial Technology, Vol. 33, No. 5, pp. 635–642.

    Article  Google Scholar 

  • Prakash, O. and Upadhyay, L. S. B. (2003). “Effect of thiols on the activity of urease from dehusked seeds of watermelon (Citrullus vulgaris).” Plant Science, Vol. 164, No. 2, pp. 189–194.

    Article  Google Scholar 

  • Ramachandran, S. K., Ramakrishnan, V., and Bang, S. S. (2001). “Remediation of concrete using microorganisms.” ACI Materials Journal, Vol. 98, No. 1, pp. 3–9.

    Google Scholar 

  • Ramanan, R., Kannan, K., Deshkar, A., Yadav, R., and Chakrabarti, T. (2010). “Enhanced algal CO2 sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond.” Bioresource Technology, Vol. 101, No. 8, pp. 2616–2622.

    Article  Google Scholar 

  • Riddles, P. W., Whan, V., Blakeley, R. L., and Zerner, B. (1991). “Cloning and sequencing of a jack bean urease-encoding cDNA.” Gene, Vol. 108, No. 2, pp. 265–267.

    Article  Google Scholar 

  • Rusznyk, A., Akob, D. M., Nietzsche, S., Eusterhues, K., Totsche, K. U., Neu, T. R., Frosch, T., Popp, J., Keiner, R., Geletneky, J., Katzschmann, L., Schulze, E. D., and Ksel, K. (2012). “Calcite biomineralization by bacterial isolates from the recently discovered Pristine Karstic Herrenberg cave.” Applied and Environmental Microbiology, Vol. 78, No. 4, pp. 1157–1167.

    Article  Google Scholar 

  • Sondi, I. and Salopek-Sondi, B. (2005). “Influence of the primary structure of enzymes on the formation of CaCO3 polymorphs: A comparison of plant (Canavalia ensiformis) and bacterial (Bacillus pasteurii) ureases.” Langmuir, Vol. 21, No. 19, pp. 8876–8882.

    Article  Google Scholar 

  • Spanos, N. and Koutsoukos, P. G. (1998). “The transformation of vaterite to calcite: Effect of the conditions of the solutions in contact with the mineral phase.” Journal of Crystal Growth, Vol. 191, No. 4, pp. 783–790.

    Article  Google Scholar 

  • Whiffin, V. S., van Paassen, L. A., and Harkes, M. P. (2007). “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiology Journal, Vol. 24, No. 5, pp. 417–423.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Sik Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, IH., Chon, CM., Jung, KY. et al. Calcite precipitation by ureolytic plant (Canavalia ensiformis) extracts as effective biomaterials. KSCE J Civ Eng 19, 1620–1625 (2015). https://doi.org/10.1007/s12205-014-0558-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-014-0558-3

Keywords

Navigation