Skip to main content
Log in

Technology developments and biomedical applications of polarization-sensitive optical coherence tomography

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Polarization-sensitive optical coherence tomography (PS-OCT) enables depth-resolved mapping of sample polarization information, such as phase-retardation and optical axis orientation, which is particularly useful when the nano-scale organization of tissue that are difficult to be observed in the intensity images of a regular optical coherence tomography (OCT). In this review, we survey two types of methods and systems of PS-OCT. The first type is PS-OCT with single input polarization state, which contain bulk optics or polarization maintaining fiber (PMF) based systems and single-mode fiber (SMF) based systems. The second type is PS-OCT with two different input polarization states, which contain SMF based systems and PMF based systems, through either time, frequency, or depth multiplexing. In addition, representative biomedical applications using PS-OCT, such as retinal imaging, skin cancer detection, and brain mapping, are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hee M R, Huang D, Swanson E A, Fujimoto J G. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. Journal of the Optical Society of America. B, Optical Physics, 1992, 9(6): 903–908

    Google Scholar 

  2. Huang D, Swanson E A, Lin C P, Schuman J S, Stinson WG, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A. Optical coherence tomography. Science, 1991, 254(5035): 1178–1181

    Article  Google Scholar 

  3. de Boer J, Srinivas S, Malekafzali A, Chen Z, Nelson J. Imaging thermally damaged tissue by polarization sensitive optical coherence tomography. Optics Express, 1998, 3(6): 212–218

    Article  Google Scholar 

  4. Schoenenberger K, Colston B W, Maitland D J, Da Silva L B, Everett M J. Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography. Applied Optics, 1998, 37(25): 6026–6036

    Article  Google Scholar 

  5. Park B H, Saxer C, Srinivas S M, Nelson J S, de Boer J F. In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. Journal of Biomedical Optics, 2001, 6(4): 474–479

    Article  Google Scholar 

  6. Jiao S, Wang L V. Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography. Journal of Biomedical Optics, 2002, 7(3): 350–358

    Article  Google Scholar 

  7. Jiao S, Yu W, Stoica G, Wang L V. Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging. Applied Optics, 2003, 42(25): 5191–5197

    Article  Google Scholar 

  8. Pierce M C, Strasswimmer J, Park B H, Cense B, de Boer J F. Advances in optical coherence tomography imaging for dermatology. The Journal of Investigative Dermatology, 2004, 123(3): 458–463

    Article  Google Scholar 

  9. Srinivas S M, de Boer J F, Park H, Keikhanzadeh K, Huang H E, Zhang J, Jung W Q, Chen Z, Nelson J S. Determination of burn depth by polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2004, 9(1): 207–212

    Article  Google Scholar 

  10. Strasswimmer J, Pierce M C, Park B H, Neel V, de Boer J F. Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. Journal of Biomedical Optics, 2004, 9(2): 292–298

    Article  Google Scholar 

  11. Duan L, Marvdashti T, Lee A, Tang J Y, Ellerbee A K. Automated identification of basal cell carcinoma by polarization-sensitive optical coherence tomography. Biomedical Optics Express, 2014, 5(10): 3717–3729

    Article  Google Scholar 

  12. Pircher M, Goetzinger E, Leitgeb R, Hitzenberger C K. Transversal phase resolved polarization sensitive optical coherence tomography. Physics in Medicine and Biology, 2004, 49(7): 1257–1263

    Article  Google Scholar 

  13. Götzinger E, Pircher M, Sticker M, Fercher A F, Hitzenberger C K. Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2004, 9(1): 94–102

    Article  Google Scholar 

  14. Ducros MG, de Boer J F, Huang H E, Chao L C, Chen Z P, Nelson J S, Milner T E, Rylander H III. Polarization sensitive optical coherence tomography of the rabbit eye. IEEE Journal on Selected Topics in Quantum Electronics, 1999, 5(4): 1159–1167

    Article  Google Scholar 

  15. Ducros M G, Marsack J D, Rylander H G 3rd, Thomsen S L, Milner T E. Primate retina imaging with polarization-sensitive optical coherence tomography. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2001, 18(12): 2945–2956

    Article  Google Scholar 

  16. Cense B, Chen T C, Park B H, Pierce M C, de Boer J F. In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2004, 9(1): 121–125

    Article  Google Scholar 

  17. Götzinger E, Pircher M, Hitzenberger C K. High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Optics Express, 2005, 13(25): 10217–10229

    Article  Google Scholar 

  18. Kemp N J, Park J, Zaatari H N, Rylander H G, Milner T E. Highsensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2005, 22(3): 552–560

    Article  MathSciNet  Google Scholar 

  19. Baumann B, Choi W, Potsaid B, Huang D, Duker J S, Fujimoto J G. Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit. Optics Express, 2012, 20(9): 10229–10241

    Article  Google Scholar 

  20. Götzinger E, Pircher M, Geitzenauer W, Ahlers C, Baumann B, Michels S, Schmidt-Erfurth U, Hitzenberger C K. Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. Optics Express, 2008, 16(21): 16410–16422

    Article  Google Scholar 

  21. Zotter S, Pircher M, Torzicky T, Baumann B, Yoshida H, Hirose F, Roberts P, Ritter M, Schütze C, Götzinger E, Trasischker W, Vass C, Schmidt-Erfurth U, Hitzenberger C K. Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology. Biomedical Optics Express, 2012, 3(11): 2720–2732

    Article  Google Scholar 

  22. Cense B, Chen T C, Park B H, Pierce M C, de Boer J F. Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography. Investigative Ophthalmology & Visual Science, 2004, 45(8): 2606–2612

    Article  Google Scholar 

  23. Makita S, Yamanari M, Yasuno Y. Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging. Optics Express, 2010, 18(2): 854–876

    Article  Google Scholar 

  24. Wang X J, Milner T E, de Boer J F, Zhang Y, Pashley D H, Nelson J S. Characterization of dentin and enamel by use of optical coherence tomography. Applied Optics, 1999, 38(10): 2092–2096

    Article  Google Scholar 

  25. Baumgartner A, Dichtl S, Hitzenberger C K, Sattmann H, Robl B, Moritz A, Fercher A F, Sperr W. Polarization-sensitive optical coherence tomography of dental structures. Caries Research, 2000, 34(1): 59–69

    Article  Google Scholar 

  26. Fried D, Xie J, Shafi S, Featherstone J D, Breunig T M, Le C. Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography. Journal of Biomedical Optics, 2002, 7(4): 618–627

    Article  Google Scholar 

  27. Chen Y, Otis L, Piao D, Zhu Q. Characterization of dentin, enamel, and carious lesions by a polarization-sensitive optical coherence tomography system. Applied Optics, 2005, 44(11): 2041–2048

    Article  Google Scholar 

  28. Jones R S, Darling C L, Featherstone J D, Fried D. Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography. Journal of biomedical optics, 2006, 11(1): 014016

    Article  Google Scholar 

  29. Pierce M, Shishkov M, Park B, Nassif N, Bouma B, Tearney G, de Boer J. Effects of sample arm motion in endoscopic polarizationsensitive optical coherence tomography. Optics Express, 2005, 13(15): 5739–5749

    Article  Google Scholar 

  30. Fan C, Yao G. Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography. Biomedical Optics Express, 2013, 4(3): 460–465

    Article  Google Scholar 

  31. Wang Y, Yao G. Optical tractography of the mouse heart using polarization-sensitive optical coherence tomography. Biomedical Optics Express, 2013, 4(11): 2540–2545

    Article  MathSciNet  Google Scholar 

  32. Hariri L P, Villiger M, Applegate M B, Mino-Kenudson M, Mark E J, Bouma B E, Suter M J. Seeing beyond the bronchoscope to increase the diagnostic yield of bronchoscopic biopsy. American Journal of Respiratory and Critical Care Medicine, 2013, 187(2): 125–129

    Article  Google Scholar 

  33. Pasquesi J J, Schlachter S C, Boppart MD, Chaney E, Kaufman S J, Boppart S A. In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography. Optics Express, 2006, 14(4): 1547–1556

    Article  Google Scholar 

  34. Matcher S J, Winlove C P, Gangnus S V. The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography. Physics in Medicine and Biology, 2004, 49(7): 1295–1306

    Article  Google Scholar 

  35. Wang H, Black A J, Zhu J, Stigen T W, Al-Qaisi M K, Netoff T I, Abosch A, Akkin T. Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography. NeuroImage, 2011, 58(4): 984–992

    Article  Google Scholar 

  36. Wang H, Zhu J, Akkin T. Serial optical coherence scanner for largescale brain imaging at microscopic resolution. NeuroImage, 2014, 84: 1007–1017

    Article  Google Scholar 

  37. Nakaji H, Kouyama N, Muragaki Y, Kawakami Y, Iseki H. Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography. Journal of Neuroscience Methods, 2008, 174(1): 82–90

    Article  Google Scholar 

  38. Al-Qaisi M K, Akkin T. Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber. Optics Express, 2010, 18(4): 3392–3403

    Article  Google Scholar 

  39. Hitzenberger C, Goetzinger E, Sticker M, Pircher M, Fercher A. Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Optics Express, 2001, 9(13): 780–790

    Article  Google Scholar 

  40. Wang H, Al-Qaisi M K, Akkin T. Polarization-maintaining fiber based polarization-sensitive optical coherence tomography in spectral domain. Optics Letters, 2010, 35(2): 154–156

    Article  Google Scholar 

  41. de Boer J F, Milner T E. Review of polarization sensitive optical coherence tomography and Stokes vector determination. Journal of Biomedical Optics, 2002, 7(3): 359–371

    Article  Google Scholar 

  42. Bonesi M, Sattmann H, Torzicky T, Zotter S, Baumann B, Pircher M, Götzinger E, Eigenwillig C, Wieser W, Huber R, Hitzenberger C K. High-speed polarization sensitive optical coherence tomography scan engine based on Fourier domain mode locked laser. Biomedical Optics Express, 2012, 3(11): 2987–3000

    Article  Google Scholar 

  43. Trasischker W, Zotter S, Torzicky T, Baumann B, Haindl R, Pircher M, Hitzenberger C K. Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer. Biomedical Optics Express, 2014, 5(8): 2798–2809

    Article  Google Scholar 

  44. Ding Z, Liang C, Tang Q, Chen Y. Quantitative measurement of tissue birefringence by single mode fiber based PS-OCT with a single input polarization state using Muller matrix. Submitted to Biomedical Optics Express

  45. Park B H, Pierce M C, Cense B, de Boer J F. Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components. Optics Letters, 2004, 29(21): 2512–2514

    Article  Google Scholar 

  46. Oh W Y, Yun S H, Vakoc B J, Shishkov M, Desjardins A E, Park B H, de Boer J F, Tearney G J, Bouma B E. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing. Optics Express, 2008, 16(2): 1096–1103

    Article  Google Scholar 

  47. Fan C, Yao G. Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography. Optics Letters, 2012, 37(9): 1415–1417

    Article  Google Scholar 

  48. Fan C, Yao G. Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2012, 17(11): 110501

    Article  Google Scholar 

  49. Fan C, Yao G. Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camera. Optics Express, 2012, 20(20): 22360–22371

    Article  Google Scholar 

  50. Fan C, Yao G. Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation. Optics Express, 2010, 18(7): 7281–7287

    Article  Google Scholar 

  51. Yamanari M, Makita S, Yasuno Y. Polarization-sensitive sweptsource optical coherence tomography with continuous source polarization modulation. Optics Express, 2008, 16(8): 5892–5906

    Article  Google Scholar 

  52. Guo S, Zhang J, Wang L, Nelson J S, Chen Z. Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography. Optics Letters, 2004, 29(17): 2025–2027

    Article  Google Scholar 

  53. Yun S, Tearney G, de Boer J, Bouma B. Removing the depthdegeneracy in optical frequency domain imaging with frequency shifting. Optics Express, 2004, 12(20): 4822–4828

    Article  Google Scholar 

  54. Corsi F, Galtarossa A, Palmieri L. Polarization mode dispersion characterization of single-mode optical fiber using backscattering technique. Journal of Lightwave Technology, 1998, 16(10): 1832–1843

    Article  Google Scholar 

  55. Park B, Pierce M, Cense B, de Boer J. Real-time multi-functional optical coherence tomography. Optics Express, 2003, 11(7): 782–793

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Chen.

Additional information

Zhenyang Ding received the B.Sc., M.Sc., and Ph.D. degrees in optics engineering from Tianjin University, Tianjin, China, in 2008, 2010 and 2013, respectively. He is currently a postdoctoral research associate in Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA. His current research interests include polarization-sensitive optical coherence tomography (PS-OCT) and representative biomedical applications. He has won Wang Daheng Optics Award for College Students, China, New academic Award by Ministry of Education, China, Excellent Doctorial Thesis Funding by Tianjin University, China, Graduate Student National Scholarship of China. Dr. Ding is a member of the Optical Society of America.

Chia-Pin Liang, who is currently a postdoctoral research fellow in Massachusetts General Hospital/Harvard Medical School, was a post-graduate course student of the National Cancer Institute-University of Maryland (NCI-UMD) joint program. Dr. Liang was awarded Ph.D. (bioengineering) degree from the University of Maryland, College Park. His interest is in developing novel biomedical imaging tools for clinicaluse and basic research.

Yu Chen is an Associate Professor of Bioengineering at the University of Maryland, College Park, USA. Dr. Chen received the B.S. degree in physics from Peking University in 1997, and the Ph.D. degree in bioengineering from University of Pennsylvania in 2003. His research interests encompass the areas of biomedical photonics and imaging, including optical coherence tomography (OCT), multiphoton microscopy (MPM), needlebased endoscopy, and biomedical applications such as kidney imaging, brain mapping, and cancer detection. He has led numerous research projects funded by National Institutes of Health (NIH) and National Science Foundation (NSF), USA. He has published more than 60 peer-reviewed papers. Dr. Chen is a Fellow of the American Society for Laser Medicine and Surgery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., Liang, CP. & Chen, Y. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography. Front. Optoelectron. 8, 128–140 (2015). https://doi.org/10.1007/s12200-015-0475-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-015-0475-1

Keywords

Navigation