Skip to main content
Log in

Recent advances in development of vertical-cavity based short pulse source at 1.55 μm

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

This paper reviews and discusses recent developments in passively mode-locked vertical external cavity surface emitting lasers (ML-VECSELs) for short pulse generation at 1.55 μm. After comparing ML-VECSELs to other options for short pulse generation, we reviewed the results of ML-VECSELs operating at telecommunication wavelength and point out the challenges in achieving sub-picosecond operation from a ML-VECSEL at 1.55 μm. We described our recent work in the VECSELs and semiconductor saturable absorber mirrors (SESAMs), their structure design, optimization and characterization, with the goal of moving the pulse width from picosecond to sub-picosecond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mollenauer L F, Mamyshev P V, Gripp J, Neubelt M J, Mamysheva N, Grüner-Nielsen L, Veng T. Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons. Optics Letters, 2000, 25(10): 704–706.

    Article  Google Scholar 

  2. Miller D A B. Rationale and challenges for optical interconnects to electronic chips. Proceedings of the IEEE, 2000, 88(6): 728–749

    Article  Google Scholar 

  3. Mule A V, Glytsis E N, Gaylord T K, Meindl J D. Electrical and optical clock distribution networks for gigascale microprocessors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2002, 10(5): 582–594

    Article  Google Scholar 

  4. Aisawa S, Sakamoto T, Fukui M, Kani J, Jinno M, Oguchi K. Ultrawideband, long distance WDM demonstration of 1 Tbit/s (50±20 Gbit/s) 600 km transmission using 1550 and 1580 nm wavelength bands. Electronics Letters, 1998, 34(11): 1127–1128

    Article  Google Scholar 

  5. Keeler G A, Nelson B E, Agarwal D, Debaes C, Helman N C, Bhatnagar A, Miller D A B. The benefits of ultrashort optical pulses in optically interconnected systems. IEEE Journal on Selected Topics in Quantum Electronics, 2003, 9(2): 477–485

    Article  Google Scholar 

  6. Juodawlkis PW, Twichell J C, Betts G E, Hargreaves J J, Younger R D, Wasserman J L, O’Donnell F J, Ray K G, Williamson R C. Optically sampled analog-to-digital converters. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(10): 1840–1853

    Article  Google Scholar 

  7. Lau K Y, Ury I, Yariv A. Passive and active mode locking of a semiconductor laser without an external cavity. Applied Physics Letters, 1985, 46(12): 1117–1119

    Article  Google Scholar 

  8. Hou L, Haji M, Akbar J, Qiu B, Bryce A C. Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers. Optics Letters, 2011, 36(6): 966–968

    Article  Google Scholar 

  9. Merghem K, Akrout A, Martinez A, Aubin G, Ramdane A, Lelarge F, Duan G H. Pulse generation at 346 GHz using a passively mode locked quantum-dash-based laser at 1.55 μm. Applied Physics Letters, 2009, 94(2): 021107-1–021107-3

    Article  Google Scholar 

  10. Nakazawa M, Yamamoto T, Tamura K R. 1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator. Electronics Letters, 2000, 36(24): 2027–2029

    Article  Google Scholar 

  11. Xu C, Liu X, Mollenauer L F, Wei X. Comparison of return-to-zero differential phase-shift keying and ON-OFF keying in long-haul dispersion managed transmission. IEEE Photonics Technology Letters, 2003, 15(4): 617–619

    Article  Google Scholar 

  12. Martinez A, Yamashita S. Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes. Optics Express, 2011, 19(7): 6155–6163

    Article  Google Scholar 

  13. Keller U, Tropper A C. Passively modelocked surface-emitting semiconductor lasers. Physics Reports, 2006, 429(2): 67–120

    Article  Google Scholar 

  14. Oehler A E H, Südmeyer T, Weingarten K J, Keller U. 100 GHz passively mode-locked Er:Yb:glass laser at 1.5 μm with 1.6-ps pulses. Optics Express, 2008, 16(26): 21930–21935

    Article  Google Scholar 

  15. Hoogland S, Dhanjal S, Tropper A C, Roberts J S, Häring R, Paschotta R, Morier-Genoud F, Keller U. Passively mode-locked diode-pumped surface-emitting semiconductor laser. IEEE Photonics Technology Letters, 2000, 12(9): 1135–1137

    Article  Google Scholar 

  16. Wilcox K G, Quarterman A H, Apostolopoulos V, Beere H E, Farrer I, Ritchie D A, Tropper A C. 175 GHz, 400-fs-pulse harmonically mode-locked surface emitting semiconductor laser. Optics Express, 2012, 20(7): 7040–7045

    Article  Google Scholar 

  17. Quarterman A H, Wilcox K G, Apostolopoulos V, Mihoubi Z, Elsmere S P, Farrer I, Ritchie D A, Tropper A C. A passively modelocked external-cavity semiconductor laser emitting 60-fs pulses. Nature Photonics, 2009, 3(12): 729–731

    Article  Google Scholar 

  18. Rudin B, Wittwer V J, Maas D J H C, Hoffmann M, Sieber O D, Barbarin Y, Golling M, Südmeyer T, Keller U. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power. Optics Express, 2010, 18(26): 27582–27588

    Article  Google Scholar 

  19. Wilcox K G, Quarterman A H, Beere H, Ritchie D A, Tropper A C. High peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser. IEEE Photonics Technology Letters, 2010, 22(14): 1021–1023

    Article  Google Scholar 

  20. Garnache A, Hoogland S, Tropper A C, Sagnes I, Saint-Girons G, Roberts J S. Sub-500-fs soliton pulse in a passively mode-locked broadband surface-emitting laser with 100-mW average power. Applied Physics Letters, 2002, 80(21): 3892–3894

    Article  Google Scholar 

  21. Klopp P, Griebner U, Zorn M, Klehr A, Liero A, Weyers M, Erbert G. Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier. Optics Express, 2009, 17(13): 10820–10834

    Article  Google Scholar 

  22. Aschwanden A, Lorenser D, Unold H J, Paschotta R, Gini E, Keller U. 2.1-W picosecond passively mode-locked external-cavity semiconductor laser. Optics Letters, 2005, 30(3): 272–274

    Article  Google Scholar 

  23. Haring R, Paschotta R, Aschwanden A, Gini E, Morier-Genoud F, Keller U. High-power passively mode-locked semiconductor lasers. IEEE Journal of Quantum Electronics, 2002, 38(9): 1268–1275

    Article  Google Scholar 

  24. Hoogland S, Garnache A, Sagnes I, Roberts J S, Tropper A C. 10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser. IEEE Photonics Technology Letters, 2005, 17(2): 267–269

    Article  Google Scholar 

  25. Aschwanden A, Lorenser D, Unold H J, Paschotta R, Gini E, Keller U. 10-GHz passively mode-locked surface emitting semiconductor laser with 1.4-W average output power. Applied Physics Letters, 2005, 86(13): 131102-1–131102-33

    Article  Google Scholar 

  26. Lorenser D, Unold H J, Maas D J H C, Aschwanden A, Grange R, Paschotta R, Ebling D, Gini E, Keller U. Towards wafer-scale integration of high repetition rate passively modelocked surface-emitting semiconductor lasers. Applied Physics B, Lasers and Optics, 2004, 79(8): 927–932

    Article  Google Scholar 

  27. Lorenser D, Maas D J H C, Unold H J, Bellancourt A R, Rudin B, Gini E, Ebling D, Keller U. 50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power. IEEE Journal of Quantum Electronics, 2006, 42(8): 838–847

    Article  Google Scholar 

  28. Hoogland S, Garnache A, Sagnes I, Paldus B, Weingarten K J, Grange R, Haiml M, Paschotta R, Keller U, Tropper A C. Picosecond pulse generation with 1.5 μm passively modelocked surface-emitting semiconductor laser. Electronics Letters, 2003, 39(11): 846–847

    Article  Google Scholar 

  29. Lindberg H, Sadeghi M, Westlund M, Wang S M, Larsson A, Strassner M, Marcinkevicius S. Mode locking a 1550 nm semiconductor disk laser by using a GaInNAs saturable absorber. Optics Letters, 2005, 30(20): 2793–2795

    Article  Google Scholar 

  30. Saarinen E J, Puustinen J, Sirbu A, Mereuta A, Caliman A, Kapon E, Okhotnikov O G. Power-scalable 1.57 μm mode-locked semiconductor disk laser using wafer fusion. Optics Letters, 2009, 34(20): 3139–3141

    Article  Google Scholar 

  31. Khadour A, Bouchoule S, Aubin G, Harmand J C, Decobert J, Oudar J L. Ultrashort pulse generation from 1.56 μm mode-locked VECSEL at room temperature. Optics Express, 2010, 18(19): 19902–19913

    Article  Google Scholar 

  32. Kuznetsov M. VECSEL Semiconductor Lasers: A Path to High-Power, Quality Beam and UV to IR Wavelength by Design. In: Okhotnikov O G, ed. Semiconductor Disk Lasers: Physics and Technology. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010

    Google Scholar 

  33. Rudin B, Rutz A, Hoffmann M, Maas D J H C, Bellancourt A R, Gini E, Südmeyer T, Keller U. Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode. Optics Letters, 2008, 33(22): 2719–2721

    Article  Google Scholar 

  34. Lindberg H, Strassner M, Bengtsson J, Larsson A. InP-based optically pumped VECSEL operating CW at 1550 nm. IEEE Photonics Technology Letters, 2004, 16(2): 362–364

    Article  Google Scholar 

  35. Lindberg H, Strassner M, Gerster E, Larsson A. 0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm. Electronics Letters, 2004, 40(10): 601–602

    Article  Google Scholar 

  36. Rautiainen J, Lyytikäinen J, Sirbu A, Mereuta A, Caliman A, Kapon E, Okhotnikov O G. 2.6 W optically-pumped semiconductor disk laser operating at 1.57-μm using wafer fusion. Optics Express, 2008, 16(26): 21881–21886

    Article  Google Scholar 

  37. Tourrenc J P, Bouchoule S, Khadour A, Harmand J C, Decobert J, Lagay N, Lafosse X, Sagnes I, Leroy L, Oudar J L. Thermal optimization of 1.55 μm OP-VECSEL with hybrid metal-metamorphic mirror for single-mode high power operation. Optical and Quantum Electronics, 2008, 40(2–4): 155–165

    Article  Google Scholar 

  38. Lindberg H, Strassner M, Bengtsson J, Larsson A. High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader. IEEE Photonics Technology Letters, 2004, 16(5): 1233–1235

    Article  Google Scholar 

  39. Zhao Z, Bouchoule S, Ferlazzo L, Sirbu A, Mereuta A, Kapon E, Galopin E, Harmand J C, Decobert J, Oudar J L. Cost-effective thermally-managed 1.55-μm VECSEL with hybrid mirror on copper substrate. IEEE Journal of Quantum Electronics, 2012, 48(5): 643–650

    Article  Google Scholar 

  40. Kemp A J, Valentine G J, Hopkins J M, Hastie J E, Smith S A, Calvez S, Dawson M D, Burns D. Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach. IEEE Journal of Quantum Electronics, 2005, 41(2): 148–155

    Article  Google Scholar 

  41. Maclean A J, Birch R B, Roth P W, Kemp A J, Burns D. Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders. Journal of the Optical Society of America B, Optical Physics, 2009, 26(12): 2228–2236

    Article  Google Scholar 

  42. Lindberg H, Larsson A, Strassner M. Single-frequency operation of a high-power, long-wavelength semiconductor disk laser. Optics Letters, 2005, 30(17): 2260–2262

    Article  Google Scholar 

  43. Bousseksou A, Bouchoule S, El Kurdi M, Strassner M, Sagnes I, Crozat P, Jacquet J. Fabrication and characterization of 1.55 μm single transverse mode large diameter electrically pumped VECSEL. Optical and Quantum Electronics, 2007, 38(15): 1269–1278

    Article  Google Scholar 

  44. Caliman A, Mereuta A, Suruceanu G, Iakovlev V, Sirbu A, Kapon E. 8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band. Optics Express, 2011, 19(18): 16996–17001

    Article  Google Scholar 

  45. Zhao Z, Bouchoule S, Galopin E, Ferlazzo L, Patriarche G, Harmand J C, Decobert J, Oudar J L. Thermal management in 1.55 μm InP-based VECSELs: heteroepitaxy of GaAs-based mirror and integration with electroplated substrate. In: French Symposium on Emerging Technologies for Micro- and Nano-fabrication, France, 2013

    Google Scholar 

  46. Paschotta R, Keller U. Passive mode locking with slow saturable absorbers. Applied Physics B, Lasers and Optics, 2001, 73(7): 653–662

    Article  Google Scholar 

  47. Keller U. Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight. Applied Physics B, Lasers and Optics, 2010, 100(1): 15–25

    Article  Google Scholar 

  48. Keller U, Knox W H, Roskos H. Coupled-cavity resonant passive mode-locked Ti: sapphire laser. Optics Letters, 1990, 15(23): 1377–1379

    Article  Google Scholar 

  49. Keller U. Ultrafast all-solid state laser technology. Applied Physics B, Lasers and Optics, 1994, 58(5): 347–363

    Article  Google Scholar 

  50. Haiml M, Siegner U, Morier-Genoud F, Keller U, Luysberg M, Lutz R C, Specht P, Weber E R. Optical nonlinearity in low-temperature-grown GaAs: microscopic limitations and optimization strategies. Applied Physics Letters, 1999, 74(21): 3134–3136

    Article  Google Scholar 

  51. Lamprecht K F, Juen S, Palmetshofer L, Hopfel R A. Ultrashort carrier lifetimes in H+ bombarded InP. Applied Physics Letters, 1991, 59(8): 926–928

    Article  Google Scholar 

  52. Mangeney J, Choumane H, Patriarche G, Leroux G, Aubin G, Harmand J C, Oudar J L, Bernas H. Comparison of light- and heavyion-irradiated quantum-wells for use as ultrafast saturable absorbers. Applied Physics Letters, 2001, 79(17): 2722–2724

    Article  Google Scholar 

  53. Lugagne Delpon E, Oudar J L, Bouché N, Raj R, Shen A, Stelmakh N, Lourtioz J M. Ultrafast excitonic saturable absorption in ionimplanted InGaAs/InAlAs multiple quantum wells. Applied Physics Letters, 1998, 72(7): 759–761

    Article  Google Scholar 

  54. Joulaud L, Mangeney J, Lourtioz J M, Crozat P, Patriarche G. Thermal stability of ion irradiated InGaAs with (sub-) picosecond carrier lifetime. Applied Physics Letters, 2003, 82(6): 856–858

    Article  Google Scholar 

  55. Khadour A. Source d’impulsions brèves à 1.55 μm en laser à cavité verticale externe pour application à l’échantillonnage optique linéaire. Dissertation for the Doctoral Degree. France: École Polytechnique, 2009

    Google Scholar 

  56. Gupta S, Whitaker J F, Mourou G A. Ultrafast carrier dynamics in III–V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures. IEEE Journal of Quantum Electronics, 1992, 28(10): 2464–2472

    Article  Google Scholar 

  57. Chin A, Chen W J, Ganikhanov F, Lin G R, Shieh J M, Pan C L, Hsieh K C. Microstructure and subpicosecond photoresponse in GaAs grown by molecular beam epitaxy at very low temperatures. Applied Physics Letters, 1996, 69(3): 397–399

    Article  Google Scholar 

  58. Okuno T, Masumoto Y, Ito M, Okamoto H. Large optical nonlinearity and fast response time in low-temperature grown GaAs/AlAs multiple quantum wells. Applied Physics Letters, 2000, 77(1): 58–60

    Article  Google Scholar 

  59. Gupta S, Frankel M Y, Valdmanis J A, Whitaker J F, Mourou G A, Smith F W, Calawa A R. Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures. Applied Physics Letters, 1991, 59(25): 3276–3278

    Article  Google Scholar 

  60. Harmon E S, Melloch M R, Woodall J M, Nolte D D, Otsuka N, Chang C L. Carrier lifetime versus anneal in low temperature growth GaAs. Applied Physics Letters, 1993, 63(16): 2248–2250

    Article  Google Scholar 

  61. Takahashi R, Kawamura Y, Kagawa T, Iwamura H. Ultrafast 1.55-μm photoresponses in low-temperature-grown InGaAs/InAlAs quantum wells. Applied Physics Letters, 1994, 65(14): 1790–1792

    Article  Google Scholar 

  62. Okuno T, Masumoto Y, Sakuma Y, Hayasaki Y, Okamoto H. Femtosecond response time in beryllium-doped low-temperature-grown GaAs/AlAs multiple quantum wells. Applied Physics Letters, 2001, 79(6): 764–766

    Article  Google Scholar 

  63. Sderström D, Marcinkevicius S, Karlsson S, Lourdudoss S. Carrier trapping due to Fe3+/Fe2+ in epitaxial InP. Applied Physics Letters, 1997, 70(25): 3374–3376

    Article  Google Scholar 

  64. Gicquel-Guézo M, Loualiche S, Even J, Labbe C, Dehaese O, Le Corre A, Folliot H, Pellan Y. 290 fs switching time of Fe-doped quantum well saturable absorbers in a microcavity in 1.55 μm range. Applied Physics Letters, 2004, 85(24): 5926–5928

    Article  Google Scholar 

  65. Kondow M, Uomi K, Hosomi K, Mozume T. Gas-source molecular beam epitaxy of GaNxAs1 − x using a N radical as the N source. Japanese Journal of Applied Physics, 1994, 33(8A): L1056–L1058

    Article  Google Scholar 

  66. Yang X, Héroux J B, Mei L F, Wang W I. InGaAsNSb/GaAs quantum wells for 1.55 μm lasers grown by molecular-beam epitaxy. Applied Physics Letters, 2001, 78(26): 4068–4070

    Article  Google Scholar 

  67. Härkönen A, Jouhti T, Tkachenko N V, Lemmetyinen H, Ryvkin B, Okhotnikov O G, Sajavaara T, Keinonen J. Dynamics of photoluminescence in GaInNAs saturable absorber mirrors. Applied Physics A, Materials Science & Processing, 2003, 77(7): 861–863

    Article  Google Scholar 

  68. Le Dû M, Harmand J C, Meunier K, Patriarche G, Oudar J L. Growth of GaNxAs1 − x atomic monolayers and their insertion in the vicinity of GaInAs quantum wells. IEE Proceedings-Optoelectronics, 2004, 151(5): 254–258

    Article  Google Scholar 

  69. Dû M L, Harmand J C, Mauguin O, Largeau L, Travers L, Oudar J L. Quantum-well saturable absorber at 1.55 μm on GaAs substrate with a fast recombination rate. Applied Physics Letters, 2006, 88(20): 201110-1–201110-3

    Google Scholar 

  70. Zhao Z, Bouchoule S, Song J Y, Galopin E, Harmand J C, Decobert J, Aubin G, Oudar J L. Subpicosecond pulse generation from a 1.56 μm mode-locked VECSEL. Optics Letters, 2011, 36(22): 4377–4379

    Article  Google Scholar 

  71. Cojocaru E, Julea T, Herisanu N. Stability and astigmatic compensation analysis of five-and six- or seven-mirror cavities for mode-locked dye lasers. Applied Optics, 1989, 28(13): 2577–2580

    Article  Google Scholar 

  72. Li K K, Dienes A, Whinnery J R. Stability and astigmatic compensation analysis of five-mirror cavity for mode-locked dye lasers. Applied Optics, 1981, 20(3): 407–411

    Article  Google Scholar 

  73. Anctil G, McCarthy N, Piché M. Sensitivity of a three-mirror cavity to thermal and nonlinear lensing: Gaussian-beam analysis. Applied Optics, 2000, 39(36): 6787–6798

    Article  Google Scholar 

  74. Hoffmann M, Sieber O D, Maas D J H C, Wittwer V J, Golling M, Südmeyer T, Keller U. Experimental verification of soliton-like pulse-shaping mechanisms in passively modelocked VECSELs. Optics Express, 2010, 18(10): 10143–10153

    Article  Google Scholar 

  75. Sieber O D, Hoffmann M, Wittwer V J, Mangold M, Golling M, Tilma B W, Südmeyer T, Keller U. Experimentally verified pulse formation model for high-power femtosecond VECSELs. Applied Physics B, Lasers and Optics, 2013, 113(1): 133–145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuang Zhao.

Additional information

Zhuang Zhao received the B.Sc. degree in optical information science and technology from Harbin Engineering University, Harbin, China, in 2007 and the M.S. degree in optics engineering from Huazhong University of Science and Technology, Wuhan, China, in 2009. In 2012, he obtained his Ph.D. degree at the Laboratory for Photonics and Nanostructures/CNRS (France) for his work on short pulses generation from passive mode-locking optically pump vertical external cavity semiconductor lasers (OP-VECSELs). Currently, he works as a post-doctoral researcher at the Lasers Physics Laboratory/CNRS on laser diode pumped vertical external cavity organic lasers (VECSOL).

Sophie Bouchoule After her Ph.D. thesis on 1.55 μm semiconductor laser diodes, Dr. S. Bouchoule joined France Telecom-CNET laboratories, then OPTO+ joint Alcatel-France Telecom Laboratory, where she was involved in the processing of high speed laser sources at 1550 nm for emerging 40 Gbit/s applications. In 2001, she joined CNRS, Laboratoire de Photonique et de Nanostructures (LPN), where she has been involved in the development of long-wavelength laser (V(E)CSEL) sources and III–V laser processing. Since 2007, she is also engaged in the development of semiconductor/organic UV-visible micocavity emitters. She is author or co-author of 80 papers in international journals and has contributed to more than 100 presentations at international conferences.

Jean-Christophe Harmand obtained his Ph.D. degree in physics at the University of Paris 7 (France) in 1988 for his work on GaAlAs/GaAs heterojunction bipolar transistors. From 1988 to 1990, he joined the Optoelectronic Research Laboratory of Matsushita in Osaka (Japan) as a post-doctoral researcher. There, he was involved in studies on metamorphic AlGaInAs/GaAs structures for high electron mobility transistors. In 1990, he joined the CNET/France Telecom R in Bagneux (France). From 1990 to 1999, he investigated growth by MBE of various III–V materials for optical telecommunication devices (laser, saturable absorbers, electro-optical modulators). In 1998, he obtained the “Habilitation à Diriger des Recherches” from University of Paris 7. In 1999, he entered the CNRS as a senior researcher in the Laboratory of Photonics and Nanostructures in Marcoussis (France). He coordinated several research activities in molecular beam epitaxy (MBE) growth including the fabrication of quantum confined structures (quantum wells, quantum dots and superlattices). He investigated III-V-N dilute nitride alloys for applications in optical fiber telecommunications. From 2004, he explored III-V nanowire growth by catalyst-assisted MBE. He is author and coauthor of 10 patents and about 250 publications in peer reviewed journal. He was awarded “Médaille d’Argent du CNRS” in 2012.

Gilles Patriarche obtained his Ph.D. in physics degree at Pierre et Marie Curie University (Paris) in 1992 for his works on epitaxy and crystal defects in the interfaces of II–VI semiconductor heterostructures grown on GaAs substrate. In 1993, he worked as a post-doctoral researcher in the Institut des matériaux de Nantes/CNRS. From 1994 to 1998, he took a post-doctoral position and then worked as senior scientist in the Research laboratory of France Telecom at Bagneux (CNET). In 1999, he entered the Laboratoire de Photonique et Nanostructures of the CNRS at Marcoussis as a senior scientist. In 2002, he obtained the “Habilitation à Diriger des Recherches” in physics from the Pierre et Marie Curie University, Paris. His current research interests are focused on the growth and the structural study of nanostructures of III–V semiconductors such as quantum dots, nanowires, multi-quantum wells and strained-layer superlattices. He is currently working on their chemical and structural characterization until the atomic scale, using Transmission Electron Microscopy and aberration corrected Scanning Transmission Electron Microscopy. Recent results have been obtained on the structural characterization and mechanisms growth of catalysed IIIV nanowires, and the determination of the morphology and the chemical composition of single InAsP Quantum Dot inserted in a nanowire. Other recent results of structural characterization have been obtained on the chemical composition and the strain field mapping of CdSe/CdZnS core/shells nanoplatelets. He works also on the structural characterization of III-V/Si heterostructures obtained by wafer bonding. He have authored and co-authored more than 380 journal papers (source ISI web of science) with a h-index of 34.

Guy Aubin received the B.S. degree from Ecole Nationale Supérieure des Télécommunications (ENST-Bretagne), Brest, France, and the M.S. degree in information processing from University of Rennes, Brest, France, both in 1981. He was the Head of Transmission Experimentation Group at the Submarine Networks Department of France Télécom R, Issy-les-Moulineaux, France, where he contributed to the world’s first demonstration of 40 Gbit/s transmission over transoceanic distance, to the first trials of undersea optical amplified links and, well before, to the definition of first installed fibered systems. He is currently engaged at the Laboratory for Photonics and Nanostructures of the Centre National de la Recherche Scientifique, CNRS-LPN, Marcoussis, France since 2001. His research interests include new device functionalities for telecommunication systems. He is involved in the research on all-optical or opto-electronics function for next-generation networks and develops advanced demonstrating setups. He has authored or coauthored more than 120 research papers in international refereed journals and conference proceedings, and holds 3 patents in the test and measurement area.

Jean-Louis Oudar graduated at Ecole Polytechnique, Paris in 1971, and received the Doctorate ès-Sciences degree in physics in 1977 from the University of Paris. Performing research at CNET and later at France Telecom R, he has worked on nonlinear optical phenomena in condensed matter. Studying the enhanced optical nonlinearities of organic compounds, he developed the basis of a molecular engineering approach for nonlinear organic materials, an internationally recognised pioneering work. Since 2000, he works at the Laboratory for Photonics and Nanostructures of the Centre National de la Recherche Scientifique (CNRS-LPN). His present research interests include fast saturable absorber nanophotonic devices for all-optical regeneration, semiconductor light sources, short pulse generation and mode-locking phenomena in semiconductor lasers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Z., Bouchoule, S., Harmand, JC. et al. Recent advances in development of vertical-cavity based short pulse source at 1.55 μm. Front. Optoelectron. 7, 1–19 (2014). https://doi.org/10.1007/s12200-014-0387-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-014-0387-5

Keywords

Navigation