Skip to main content

Advertisement

Log in

Condensed state fluorescence switching of hexaarylbiimidazole-tetraphenylethene conjugate for super-resolution fluorescence nanolocalization

  • Research Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

This paper reported the synthesis of hexaarylbiimidazole- tetraphenylethene (HABI-TPE) conjugated photochromic fluorophore, which simultaneously exhibited photochromic property, condensed state enhanced emission and reversible fluorescence switching. Upon UV irradiation, a green species with a broad absorption band between 550 and 800 nm ( the absorption maximum at 697 nm ) was observed, which readily faded to colorless in the darkness. HABI-TPE launched strong fluorescence with the maximum emission wavelength at 520–580 nm under the excitation with 450–500 nm visible light in condensed state, which is in contrast to nonfluorescence in solution. The maximum emission wavelength in condensed state was dependent of excitation wavelength. More interestingly, HABI-TPE exhibited reversible fluorescence switching upon alternating irradiation with blue or near-UV light (wavelength less than 490 nm) and green light (more than 490 nm) in condensed state. Our evaluation demonstrated that HABI-TPE exhibited great photoswitchable fluorescence, which is a promising photoswitchable fluorophore for localization-based super-resolution microscopy, evidencing by resolving nanostructures with sub-100 nm resolution in polymethylmethacrylate films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duerr H, Bouas-Laurent H. Photochromism: Molecules and Systems. Amsterdam: Elsevier, 2003

    Google Scholar 

  2. Hayashi T, Maeda K. Preparation of a new phototropic substance. Bulletin of the Chemical Society of Japan, 1960, 33(4): 565–566

    Article  Google Scholar 

  3. White D M, Sonnenberg J. Oxidation of triarylimidazoles. Structures of the photochromic and piezochromic dimers of triarylimidazyl radicals. Journal of the American Chemical Society, 1966, 88(16): 3825–3829

    Article  Google Scholar 

  4. Kawano M, Sano T, Abe J, Ohashi Y. The first in situ direct observation of the light-induced radical pair from a hexaarylbiimidazolyl derivative by X-ray crystallography. Journal of the American Chemical Society, 1999, 121(35): 8106–8107

    Article  Google Scholar 

  5. Abe J, Sano T, Kawano M, Ohashi Y, Matsushita M M, Iyoda T. EPR and density functional studies of light-induced radical pairs in a single crystal of a hexaarylbiimidazolyl derivative. Angewandte Chemie International Edition, 2001, 40(3): 580–582

    Article  Google Scholar 

  6. Iwahori F, Hatano S, Abe J. Rational design of a new class of diffusion-inhibited HABI with fast back-reaction. Journal of Physical Organic Chemistry, 2007, 20(11): 857–863

    Article  Google Scholar 

  7. Fujita K, Hatano S, Kato D, Abe J. Photochromism of a radical diffusion-inhibited hexaarylbiimidazole derivative with intense coloration and fast decoloration performance. Organic Letters, 2008, 10(14): 3105–3108

    Article  Google Scholar 

  8. Kimoto A, Tokita A, Horino T, Oshima T, Abe J. Fast photochromic polymers carrying [2.2] paracyclophane-bridged imidazole dimer. Macromolecules, 2010, 43(8): 3764–3769

    Article  Google Scholar 

  9. Kishimoto Y, Abe J. A fast photochromic molecule that colors only under UV light. Journal of the American Chemical Society, 2009, 131(12): 4227–4229

    Article  Google Scholar 

  10. Harada Y, Hatano S, Kimoto A, Abe J. Remarkable acceleration for back-reaction of a fast photochromic molecule. The Journal of Physical Chemistry Letters, 2010, 1(7): 1112–1115

    Article  Google Scholar 

  11. Miyasaka H, Satoh Y, Ishibashi Y, Ito S, Nagasawa Y, Taniguchi S, Chosrowjan H, Mataga N, Kato D, Kikuchi A, Abe J. Ultrafast photodissociation dynamics of a hexaarylbiimidazole derivative with pyrenyl groups: dispersive reaction from femtosecond to 10 ns time regions. Journal of the American Chemical Society, 2009, 131(21): 7256–7263

    Article  Google Scholar 

  12. Luo J D, Xie Z L, Lam J W Y, Cheng L, Chen H Y, Qiu C F, Kwok H S, Zhan XW, Liu Y Q, Zhu D B, Tang B Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications (Cambridge), 2001, (18): 1740–1741

    Google Scholar 

  13. Hong Y, Lam J W Y, Tang B Z. Aggregation-induced emission. Chemical Society Reviews, 2011, 40(11): 5361–5388

    Article  Google Scholar 

  14. Hong Y N, Lam J W Y, Tang B Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chemical Communications, 2009, (29): 4332–4353

    Google Scholar 

  15. Aldred M P, Li C, Zhang G F, Gong W L, Li A D Q, Dai Y F, Ma D G, Zhu M Q. Fluorescence quenching and enhancement of vitrifiable oligofluorenes end-capped with tetraphenylethene. Journal of Materials Chemistry, 2012, 22(15): 7515–7528

    Article  Google Scholar 

  16. Zhang G F, Aldred M P, Gong W L, Li C, Zhu M Q. Utilising tetraphenylethene as a dual activator for intramolecular charge transfer and aggregation induced emission. Chemical Communications (Cambridge), 2012, 48(62): 7711–7713

    Article  Google Scholar 

  17. Zhu M Q, Zhang G F, Li C, Aldred M P, Chang E, Drezek R A, Li A D Q. Reversible two-photon photoswitching and two-photon imaging of immunofunctionalized nanoparticles targeted to cancer cells. Journal of the American Chemical Society, 2011, 133(2): 365–372

    Article  Google Scholar 

  18. Zhu M Q, Zhang G F, Li C, Li Y J, Aldred M P, Li A D Q. Photoswitchable nanofluorophores for innovative bioimaging. Journal of Innovative Optical Health Sciences, 2011, 4(4): 395–408

    Article  Google Scholar 

  19. Zhu M Q, Zhu L, Han J J, Wu W W, Hurst J K, Li A D Q. Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. Journal of the American Chemical Society, 2006, 128(13): 4303–4309

    Article  Google Scholar 

  20. Hu D H, Tian Z Y, Wu W W, Wan W, Li A D Q. Photoswitchable nanoparticles enable high-resolution cell imaging: PULSAR microscopy. Journal of the American Chemical Society, 2008, 130(46): 15279–15281

    Article  Google Scholar 

  21. Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 2006, 3(10): 793–796

    Article  Google Scholar 

  22. Huang B, Wang W Q, Bates M, Zhuang X W. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 2008, 319(5864): 810–813

    Article  Google Scholar 

  23. Bates M, Huang B, Dempsey G T, Zhuang X W. Multicolor superresolution imaging with photo-switchable fluorescent probes. Science, 2007, 317(5845): 1749–1753

    Article  Google Scholar 

  24. Bates M, Huang B, Zhuang X W. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Current Opinion in Chemical Biology, 2008, 12(5): 505–514

    Article  Google Scholar 

  25. Lord S J, Conley N R, Lee H L D, Samuel R, Liu N, Twieg R J, Moerner W E. A photoactivatable push-pull fluorophore for singlemolecule imaging in live cells. Journal of the American Chemical Society, 2008, 130(29): 9204–9205

    Article  Google Scholar 

  26. Dempsey G T, Bates M, Kowtoniuk W E, Liu D R, Tsien R Y, Zhuang X W. Photoswitching mechanism of cyanine dyes. Journal of the American Chemical Society, 2009, 131(51): 18192–18193

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Li Huang or Ming-Qiang Zhu.

Additional information

These authors contribute equally to this work

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, WL., Hu, Z., Li, C. et al. Condensed state fluorescence switching of hexaarylbiimidazole-tetraphenylethene conjugate for super-resolution fluorescence nanolocalization. Front. Optoelectron. 6, 458–467 (2013). https://doi.org/10.1007/s12200-013-0330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-013-0330-1

Keywords

Navigation