Skip to main content

Advertisement

Log in

Evaluation of beam modeling for small fields using a flattening filter-free beam

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The characteristics of a flattening filter-free (FFF) beam are different from those of a beam with a flattening filter. For small-field dosimetry, the beam data needed by the radiation treatment planning system (RTPS) includes the percent depth dose (PDD), off-center ratio (OCR), and output factor (OPF) for field sizes down to 3 × 3 cm2 to calculate the beam model. The purpose of this study was to evaluate the accuracy of calculations for the FFF beam by the Eclipse treatment planning system for field sizes smaller than 3 × 3 cm2 (2 × 2 and 1 × 1 cm2). We used 6X and 10X FFF beams by the Varian TrueBeam to produce. The AAA and AXB algorithms of the Eclipse were used to compare the Monte Carlo (MC) calculation and the measurements from three dosimeters, a diode detector, a PinPoint dosimeter, and EBT3 film. The PDD curves and the penumbra width in the OCR calculated by the Eclipse, measured data, and those from the MC calculations were in good agreement to within ±2.8 % and ±0.6 mm, respectively. However, the difference in the OPF values between AAA and AXB for a field size of 1 × 1 cm2 was 5.3 % for the 6X FFF beam and 7.6 % for the 10X FFF beam. Therefore, we have to confirm the small field data that is included for the RTPS commission procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Georg D, Knoos T, McClean B. Current status and future perspective of flattening filter free photon beams. Med Phys. 2011;38:1280–93.

    Article  PubMed  Google Scholar 

  2. Mok E, Kielar K, Wang L, et al. Evaluation of the accuracy of Eclipse AAA modeling for flattening filter free beam used for SBRT. Med Phys. 2011;38:3711–2.

    Article  Google Scholar 

  3. Das IJ, Ding GX, Ahnesjo A, et al. Small fields: nonequilibrium radiation dosimetry. Med Phys. 2008;35:206–15.

    Article  PubMed  Google Scholar 

  4. Duggan DM, Coffey CW, et al. Small photon field dosimetry for stereotactic radiosurgery. Med Dosim. 1998;23:153–9.

    Article  CAS  PubMed  Google Scholar 

  5. Palmans H. Small and composite field dosimetry: the problems and recent progress. Standards, applications and quality assurance in medical radiation dosimetry. In: Proceedings of an international symposium, Vienna, Austria: IAEA; 2011. p. 161–80.

  6. Rice RK, Hansen JL, Svensson GK, et al. Measurements of dose distributions in small beams of 6X X-rays. Phys Med Biol. 1987;32:1087–99.

    Article  CAS  PubMed  Google Scholar 

  7. McKerracher C, Thwaites DI. Assessment of new small-field detectors against standard-field detectors for practical stereotactic beam data acquisition. Phys Med Biol. 1999;44:2143–60.

    Article  CAS  PubMed  Google Scholar 

  8. Scott AJD, Kumar S, Nahum AE, et al. Characterizing the influence of detector density on dosimeter response in non-equilibrium small photon fields. Phys Med Biol. 2012;57:4461–76.

    Article  PubMed  Google Scholar 

  9. Fenwick JD, Kumar S, Scott AJD, et al. Using cavity theory to describe the dependence on detector density of dosimeter response in non-equilibrium small fields. Phys Med Biol. 2013;58:2901–23.

    Article  PubMed  Google Scholar 

  10. Heydarian M, Hoban PW, Beddoe AH. A comparison of dosimetry techniques in stereotactic radiosurgery. Phys Med Biol. 1996;41:93–110.

    Article  CAS  PubMed  Google Scholar 

  11. Araki F. Monte Carlo study on photon beams with small fields. Jpn J Radiol Technol. 2006;62(10):1399–410.

    Article  Google Scholar 

  12. Scott AJD, Nahum AE, Fenwick JD. Using a Monte Carlo model to predict dosimetric properties of small radiotherapy photon fields. Med Phys. 2008;35:4671–84.

    Article  PubMed  Google Scholar 

  13. Scott AJD, Nahum AE, Fenwick JD. Monte Carlo modeling of small photon fields: quantifying the impact of focal spot size on source occlusion and output factors, and exploring miniphantom design for small-field measurements. Med Phys. 2009;36:3132–44.

    Article  PubMed  Google Scholar 

  14. Pantelis E, Moutsatsos A, Zourari K, et al. On the output factor measurements of the CyberKnife iris collimator small fields: experimental determination of the k(Q(clin), Q(msr)) (f(clin), f(msr)) correction. Med Phys. 2012;39(8):4875–85.

    Article  CAS  PubMed  Google Scholar 

  15. Chang Z, Wu Q, Adamson J, et al. Commissioning and dosimetric characteristics of TrueBeam system: composite data of three TrueBeam machines. Med Phys. 2012;39(11):6981–7018.

    Article  PubMed  Google Scholar 

  16. Kron T, Clivio A, et al. Small field segments surrounded by large areas only shielded by a multileaf collimator: comparison of experiments and dose calculation. Med Phys. 2012;39(12):7480–9.

    Article  CAS  PubMed  Google Scholar 

  17. Muralidhar KR. Derivation of equations to define inflection point and its analysis in flattening filter free photon beams based on the principle of polynomial function. Int J Cancer Ther Oncol. 2015;3(1):03015.

    Article  Google Scholar 

  18. Zavgorodni S. Monte Carlo investigation into feasibility and dosimetry of flat flattening filter free beams. Phys Med Biol. 2013;58(21):7699–713.

    Article  PubMed  Google Scholar 

  19. Andres C, del Castillo A, Tortosa R, Alonso D, Barquero R. A comprehensive study of the Gafchromic EBT2 radiochromic film. A comparison with EBT. Med Phys. 2010;37:6271–8.

    Article  CAS  PubMed  Google Scholar 

  20. Liu HH, Mackie TR, et al. Modeling photon output caused by backscattered radiation into the monitor chamber from collimator jaws using a Monte Carlo technique. Med Phys. 2000;27(4):737–44.

    Article  CAS  PubMed  Google Scholar 

  21. Van Esch A, Tillikainen L, et al. Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys. 2006;33(11):4130–48.

    Article  PubMed  Google Scholar 

  22. Lechner W, Palmans H, et al. Detector comparison for small field output factor measurements in flattening filter free photon beams. Radiother Oncol. 2013;109(3):356–60.

    Article  PubMed  Google Scholar 

  23. Scotta AJD, Nahum AE, Fenwick JD. Using a Monte Carlo model to predict dosimetric properties of small radiotherapy photon fields. Med Phys. 2008;35:4671–84.

    Article  Google Scholar 

  24. Kairn T, Crowe SB, et al. Effects of collimator backscatter in an Elekta linac by Monte Carlo simulation. Australas Phys Eng Sci Med. 2009;32(3):129–35.

    Article  CAS  PubMed  Google Scholar 

  25. Tuomas T, Laura K, et al. Using varian photon beam source model for dose calculation of small fields. Clin Perspect. 2013; available from myvarian.com.

  26. Underwood TS, Winter HC. Detector density and small field dosimetry: integral versus point dose measurement schemes. Med Phys. 2013;40(8):082102.

    Article  CAS  PubMed  Google Scholar 

  27. Vassiliev ON, Wareing TA, McGhee J, Failla G, Salehpour MR, Mourtada F. Validation of a new gridbased Blotzmann equation solver for dose calculation in radiotherapy with photon beams. Phys Med Biol. 2010;55(3):581–98.

    Article  PubMed  Google Scholar 

  28. Bush K, Gagne IM, Zavgorodni S, Ansbacher W, Beckham W. Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations. Med Phys. 2011;38(4):2208–21.

    Article  CAS  PubMed  Google Scholar 

  29. Rana S, Rogers K. Dosimetric evaluation of Acuros XB dose calculation algorithm with measurements in predicting doses beyond different air gap thickness for smaller and larger field sizes. J Med Phys. 2013;38(1):9–14.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Kawahara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This work won the excellent poster award at the 15th International Congress of Radiation Research (ICRR), Kyoto, Japan, May 25–29, 2015.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawahara, D., Ozawa, S., Nakashima, T. et al. Evaluation of beam modeling for small fields using a flattening filter-free beam. Radiol Phys Technol 10, 33–40 (2017). https://doi.org/10.1007/s12194-016-0365-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-016-0365-2

Keywords

Navigation