Skip to main content
Log in

Iterative image reconstruction that includes a total variation regularization for radial MRI

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

This paper presents an iterative image reconstruction method for radial encodings in MRI based on a total variation (TV) regularization. The algebraic reconstruction method combined with total variation regularization (ART_TV) is implemented with a regularization parameter specifying the weight of the TV term in the optimization process. We used numerical simulations of a Shepp–Logan phantom, as well as experimental imaging of a phantom that included a rectangular-wave chart, to evaluate the performance of ART_TV, and to compare it with that of the Fourier transform (FT) method. The trade-off between spatial resolution and signal-to-noise ratio (SNR) was investigated for different values of the regularization parameter by experiments on a phantom and a commercially available MRI system. ART_TV was inferior to the FT with respect to the evaluation of the modulation transfer function (MTF), especially at high frequencies; however, it outperformed the FT with regard to the SNR. In accordance with the results of SNR measurement, visual impression suggested that the image quality of ART_TV was better than that of the FT for reconstruction of a noisy image of a kiwi fruit. In conclusion, ART_TV provides radial MRI with improved image quality for low-SNR data; however, the regularization parameter in ART_TV is a critical factor for obtaining improvement over the FT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bergin CJ, Pauly JM, Macovski A. Lung parenchyma: projection reconstruction MR imaging. Radiology. 1991;179(3):777–81.

    Article  CAS  PubMed  Google Scholar 

  2. Glover GH, Pauly JM. Projection reconstruction techniques for reduction of motion effects in MRI. Magn Reson Med. 1992;28(2):275–89.

    Article  CAS  PubMed  Google Scholar 

  3. Song HK, Dougherty L. k-space weighted image contrast (KWIC) for contrast manipulation in projection reconstruction MRI. Magn Reson Med. 2000;44(6):825–32.

    Article  CAS  PubMed  Google Scholar 

  4. Gmitro AF, Kono M, Theilmann RJ, Altbach MI, Li Z, Trouard TP. Radial GRASE: implementation and applications. Magn Reson Med. 2005;53(6):1363–71.

    Article  PubMed  Google Scholar 

  5. Pipe JG. Reconstructing MR images from undersampled data: data-weighting considerations. Magn Reson Med. 2000;43(6):867–75.

    Article  CAS  PubMed  Google Scholar 

  6. Rahmer J, Börnert P, Groen J, Bos C. Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling. Magn Reson Med. 2006;55(5):1075–82.

    Article  PubMed  Google Scholar 

  7. Takizawa M, Ito T, Itagaki H, Takahashi T, Shimizu K, Harada J. Modified echo peak correction for radial acquisition regime (RADAR). Magn Reson Med Sci. 2009;8(4):149–58.

    Article  PubMed  Google Scholar 

  8. Stehning C, Börnert P, Nehrke K, Eggers H, Dössel O. Fast isotropic volumetric coronary MR angiography using free-breathing 3D radial balanced FFE acquisition. Magn Reson Med. 2004;52(1):197–203.

    Article  CAS  PubMed  Google Scholar 

  9. Spuentrup E, Katoh M, Buecker A, Manning WJ, Schaeffter T, Nguyen TH, Kühl HP, Stuber M, Botnar RM, Günther RW. Free-breathing 3D steady-state free precession coronary MR angiography with radial k-space sampling: comparison with Cartesian k-space sampling and cartesian gradient-echo coronary MR angiography—pilot study. Radiology. 2004;231(2):581–6.

    Article  PubMed  Google Scholar 

  10. Boubertakh R, Prieto C, Batchelor PG, Uribe S, Atkinson D, Eggers H, Sørensen TS, Hansen MS, Razavi RS, Schaeffter T. Whole-heart imaging using undersampled radial phase encoding (RPE) and iterative sensitivity encoding (SENSE) reconstruction. Magn Reson Med. 2009;62(5):1331–7.

    Article  CAS  PubMed  Google Scholar 

  11. Katoh M, Stuber M, Buecker A, Günther RW, Spuentrup E. Spin-labeling coronary MR angiography with steady-state free precession and radial k-space sampling: initial results in healthy volunteers. Radiology. 2005;236(3):1047–52.

    Article  PubMed  Google Scholar 

  12. Gabr RE, Aksit P, Bottomley PA, Youssef AB, Kadah YM. Deconvolution-interpolation gridding (DING): accurate reconstruction for arbitrary k-space trajectories. Magn Reson Med. 2006;56(6):1182–91.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Mistretta CA, Wieben O, Velikina J, Block W, Perry J, Wu Y, Johnson K, Wu Y. Highly constrained backprojection for time-resolved MRI. Magn Reson Med. 2006;55(1):30–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Block KT, Uecker M, Frahm J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med. 2007;57(6):1086–98.

    Article  PubMed  Google Scholar 

  15. Moriguchi H, Duerk JL. Iterative next-neighbor regridding (INNG): improved reconstruction from nonuniformly sampled k-space data using rescaled matrices. Magn Reson Med. 2004;51(2):343–52.

    Article  PubMed  Google Scholar 

  16. Gopi VP, Palanisamy P, Wahid KA, Babyn P. MR image reconstruction based on iterative split bregman algorithm and nonlocal total variation. Comput Math Methods Med. 2013;2013:985819.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Radin LI, Osher S, Fatami E. Nonlinear total variation based noise removal algorithm. Physica D. 1992;60:259–68.

    Article  Google Scholar 

  18. Sidky EY, Kao CM, Pan X. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. J X-ray Sci Tech. 2006;14(2):119–39.

    Google Scholar 

  19. Keeling SL, Clason C, Hintermüller M, Knoll F, Laurain A, von Winckel G. An image space approach to Cartesian based parallel MR imaging with total variation regularization. Med Image Anal. 2012;16(1):189–200.

    Article  PubMed  Google Scholar 

  20. He Q, Weng D, Zhou X, Ni C. Regularized iterative reconstruction for undersampled BLADE and its applications in three-point Dixon water-fat separation. Magn Reson Med. 2011;65(5):1314–25.

    Article  PubMed  Google Scholar 

  21. Nuyts J, De Man B, Dupont P, Defrise M, Suetens P, Mortelmans L. Iterative reconstruction for helical CT: a simulation study. Phys Med Biol. 1998;43(4):729–37.

    Article  CAS  PubMed  Google Scholar 

  22. Okano Y, MTF analysis and its measurements for digital still camera. In: 50th annual conference: a celebration of all imaging. Cambridge, Massachusetts; 1997. p. 383–87. http://www.imaging.org/IST/store/epub.cfm?abstrid=110.

  23. Japan Society of Radiological Technology. Handbook of clinical radiological technology experiment. Tokyo: Tsushosangyokenkyusha; 1996. p. 182–9.

    Google Scholar 

  24. Association National Electrical Manufactures. Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging MS1-2008. Washington, DC: NEMA; 2008.

    Google Scholar 

  25. Koral KF, Rogers WL. Application of ART to time-coded emission tomography. Phys Med Biol. 1979;24(5):879–94.

    Article  CAS  PubMed  Google Scholar 

  26. Guan H, Gordon R. A projection access order for speedy convergence of ART (algebraic reconstruction technique): a multilevel scheme for computed tomography. Phys Med Biol. 1994;39(11):2005–22.

    Article  CAS  PubMed  Google Scholar 

  27. Guan H, Gordon R, Zhu Y. Combining various projection access schemes with the algebraic reconstruction technique for low-contrast detection in computed tomography. Phys Med Biol. 1998;43(8):2413–21.

    Article  CAS  PubMed  Google Scholar 

  28. Kadah YM, Hu X. Algebraic reconstruction for magnetic resonance imaging under B0 inhomogeneity. IEEE Trans Med Imaging. 1998;17(3):362–70.

    Article  CAS  PubMed  Google Scholar 

  29. Weiger M, Hennel F, Pruessmann KP. Sweep MRI with algebraic reconstruction. Magn Reson Med. 2010;64(6):1685–95.

    Article  PubMed  Google Scholar 

  30. Steckner MC, Drost DJ, Prato FS. Computing the modulation transfer function of a magnetic resonance imager. Med Phys. 1994;21(3):483–9.

    Article  CAS  PubMed  Google Scholar 

  31. Miyati T, Fujita H, Kasuga T, Koshida K, Sanada S, Banno T, Mase M, Yamada K. Measurements of MTF and SNR(f) using a subtraction method in MRI. Phys Med Biol. 2002;47(16):2961–72.

    Article  PubMed  Google Scholar 

  32. Yan G, Tian J, Zhu S, Dai Y, Qin C. Fast cone-beam CT image reconstruction using GPU hardware. J X-ray Sci Tech. 2008;16:225–34.

    Google Scholar 

Download references

Acknowledgments

This research has been supported by a Grant-in-Aid for Scientific Research (KAKENHI No. 26461832).

Conflict of interest

The authors declare that they have no conflict of interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Kojima.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kojima, S., Shinohara, H., Hashimoto, T. et al. Iterative image reconstruction that includes a total variation regularization for radial MRI. Radiol Phys Technol 8, 295–304 (2015). https://doi.org/10.1007/s12194-015-0320-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-015-0320-7

Keywords

Navigation