Skip to main content
Log in

A new method with variable injection parameters in contrast-enhanced CT: a phantom study for evaluating an aortic peak enhancement

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Contrast-enhanced CT employs a standard uniphasic single-injection method (SIM), wherein administration is based on two parameters: the iodine administration rate (mgI/s) and the injection duration (s). However, as the SIM uses a fixed iodine administration rate, only a uniform contrast enhancement can be achieved with this method. The iodine administration rate can be increased only by increasing the iodine dose or shortening the injection duration, and no arbitrary adjustments can be made to the peak enhancement characteristics of the time-enhancement curves (TECs) at the fixed injection parameters used in the SIM. To address this problem, we developed a variable injection method (VIM) with a new parameter, the variation factor (VF), to adjust the TECs. A phantom study with the VIM indicated that arbitrary adjustments to the iodine administration rate could be made without changing the injection duration or increasing the iodine load. In our study, VFs of 0.3 and 0.5, which showed earlier achievement of peak enhancements, showed better temporal separation between arterial vasculature and parenchyma or the venous vasculature than that obtained with the SIM. The higher peak enhancement provided by the VF of 0.3 was also considered to improve the contrast in qualitative diagnostic examinations. A VF of 0.5 increased the duration of the enhancement and was considered to produce stable enhancement of contrast in vascular investigations. The VF is now an essential parameter, and the VIM is useful as a reasonable contrast method that may contribute to both improved visualization and improvement in the accuracy of morphologic diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bae KT, Heiken JP, Brink JA. Aortic and hepatic contrast medium enhancement at CT. Part I. Prediction with a computer model. Radiology. 1998;207(3):647–55.

    Article  CAS  PubMed  Google Scholar 

  2. Bae KT, Heiken JP, Brink JA. Aortic and hepatic peak enhancement at CT: effect of contrast medium injection rate—pharmacokinetic analysis and experimental porcine model. Radiology. 1998;206(2):455–64.

    Article  CAS  PubMed  Google Scholar 

  3. Fleischmann D, Hittmair K. Mathematical analysis of arterial enhancement and optimization of bolus geometry for CT angiography using the discrete Fourier transform. J Comput Assist Tomogr. 1999;23(3):474–84.

    Article  CAS  PubMed  Google Scholar 

  4. Fleischmann D, Rubin GD, Bankier AA, Hittmair K. Improved uniformity of aortic enhancement with customized contrast medium injection protocols at CT angiography. Radiology. 2000;214(2):363–71.

    Article  CAS  PubMed  Google Scholar 

  5. Awai K, Hatcho A, Nakayama Y, Kusunoki S, Liu D, Hatemura M, et al. Simulation of aortic peak enhancement on MDCT using a contrast material flow phantom: feasibility study. Am J Roentgenol. 2006;186(2):379–85.

    Article  Google Scholar 

  6. Awai K, Hiraishi K, Hori S. Effect of contrast material injection duration and rate on aortic peak time and peak enhancement at dynamic CT involving injection protocol with dose tailored to patient weight. Radiology. 2004;230(1):142–50.

    Article  PubMed  Google Scholar 

  7. Heiken JP, Brink JA, McClennan BL, Sagel SS, Crowe TM, Gaines MV. Dynamic incremental CT: effect of volume and concentration of contrast material and patient weight on hepatic enhancement. Radiology. 1995;195(2):353–7.

    Article  CAS  PubMed  Google Scholar 

  8. Yamashita Y, Komohara Y, Takahashi M, Uchida M, Hayabuchi N, Shimizu T, et al. Abdominal helical CT: evaluation of optimal doses of intravenous contrast material—a prospective randomized study. Radiology. 2000;216(3):718–23.

    Article  CAS  PubMed  Google Scholar 

  9. Bae KT, Seek BA, Hildebolt CF, Tao C, Zhu F, Kanematsu M, et al. Contrast enhancement in cardiovascular MDCT; effect of body weight, height, body surface area, body mass index, and obesity. Am J Roentgenol. 2008;190(3):777–84.

    Article  Google Scholar 

  10. Kondo H, Kanematsu M, Goshima S, Tomita Y, Miyoshi T, Hatcho A, et al. Abdominal multidetector CT in patients with varying body fat percentages: estimation of optimal contrast material dose. Radiology. 2008;249(3):872–7.

    Article  PubMed  Google Scholar 

  11. Murakami T, Kim T, Kawata S, Kanematsu M, Federle MP, Hori M, et al. Evaluation of optimal timing of arterial phase imaging for the detection of hypervascular hepatocellular carcinoma by using triple arterial phase imaging with multidetector-row helical computed tomography. Invest Radiol. 2003;38(8):497–503.

    PubMed  Google Scholar 

  12. Bae KT, Tran HQ, Heiken JP. Multiphasic injection method for uniform prolonged vascular enhancement at CT angiography: pharmacokinetic analysis and experimental porcine model. Radiology. 2000;216(3):872–80.

    Article  CAS  PubMed  Google Scholar 

  13. Utsunomiya D, Awai K, Sakamoto T, Nishiharu T, Urata J, Taniguchi A, et al. Cardiac 16-MDCT for anatomic and functional analysis: assessment of a biphasic contrast injection protocol. Am J Roentgenol. 2006;187(3):638–44.

    Article  Google Scholar 

  14. Cameron JR, Skofronick JG, Grant RM. Physics of the body (second edition). Madison: Medical Physics Publishing; 1999. p. 181–2.

    Google Scholar 

  15. Hudson DM. Top shelf human anatomy and physiology. Portland: Walch Education Publishing; 2005. p. 134–5.

    Google Scholar 

  16. Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology. 2010;256(1):32–61.

    Article  PubMed  Google Scholar 

  17. Terasawa K, Hatcho A. Contrast enhancement technique in brain 3D-CTA studies: optimizing the amount of contrast medium according to scan time based on TDC. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2008;64(6):681–9 (in Japanese).

    Article  PubMed  Google Scholar 

  18. Yamaguchi I, Kidoya E, Suzuki M, Kimura H. Optimizing scan timing of hepatic arterial phase by physiologic pharmacokinetic analysis in bolus-tracking technique by multi-detector row computed tomography. Radiol Phys Technol. 2011;4(1):43–52.

    Article  PubMed  Google Scholar 

  19. Bae KT, Heiken JP, Brink JA. Aortic and hepatic contrast medium enhancement at CT. Part II. Effect of reduced cardiac output in a porcine model. Radiology. 1998;207(3):657–62.

    Article  CAS  PubMed  Google Scholar 

  20. Awai K, Takada K, Onishi H, Hori S. Aortic and hepatic enhancement and tumor-to-liver contrast: analysis of the effect of different concentrations of contrast material at multi-detector row helical CT. Radiology. 2002;224(3):757–63.

    Article  PubMed  Google Scholar 

  21. Fleischmann D. CT angiography: injection and acquisition technique. Radiol Clin North Am. 2010;48(2):237–47.

    Article  PubMed  Google Scholar 

  22. Kim T, Murakami T, Takahashi S, Tsuda K, Tomoda K, Narumi Y, et al. Effects of injection rates of contrast material on arterial phase hepatic CT. Am J Roentgenol. 1998;171(2):429–32.

    Article  CAS  Google Scholar 

  23. Wang CL, Cohan RH, Ellis JH, Adusumilli S, Dunnick NR. Frequency, management, and outcome of extravasation of nonionic iodinated contrast medium in 69,657 intravenous injections. Radiology. 2007;243(1):80–7.

    Article  PubMed  Google Scholar 

  24. Aviram G, Cohen D, Steinvil A, Shmueli H, Keren G, Banai S, et al. Significance of reflux of contrast medium into the inferior vena cava on computerized tomographic pulmonary angiogram. Am J Cardiol. 2012;109(3):432–7.

    Article  PubMed  Google Scholar 

  25. Terasawa K, Hatcho A, Muroga K. Assessment of contrast enhancement using the variable contrast medium injection method in 3D-CTA of the head. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2005;61(1):126–34 (in Japanese).

    PubMed  Google Scholar 

  26. Muroga K, Hatcho A, Terasawa K. Evaluation of the variable-speed injection method for three-dimensional CT angiography of the trunk. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2005;61(1):110–7 (in Japanese).

    PubMed  Google Scholar 

  27. Yanaga Y, Awai K, Nakamura T, Namimoto T, Oda S, Funama Y, et al. Optimal contrast dose for depictin of the hypervascular hepatcellular carcinoma at dynamic CT using 64-MDCT. Am J Roentgenol. 2008;190(4):1003–9.

    Article  Google Scholar 

Download references

Conflict of interest

Our study is basic research involving a new method of contrast-enhanced CT examination and, therefore, does not require ethical approval. All authors have approved the content and the submission of the manuscript. The authors declare no particular conflicts of interest relevant to this manuscript. The manuscript has not been submitted to other publications. We have received no research grant funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Terasawa.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terasawa, K., Maruyama, A. & Tsukimata, T. A new method with variable injection parameters in contrast-enhanced CT: a phantom study for evaluating an aortic peak enhancement. Radiol Phys Technol 8, 248–257 (2015). https://doi.org/10.1007/s12194-015-0314-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-015-0314-5

Keywords

Navigation