Skip to main content
Log in

Subjective HRTF evaluations for obtaining global similarity metrics of assessors and assessees

  • Original Paper
  • Published:
Journal on Multimodal User Interfaces Aims and scope Submit manuscript

Abstract

In the absence of a well-suited measure for quantifying binaural data variations, this study presents a global perceptual distance metric which can describe both HRTF and listener similarities. The metric is derived based on subjective evaluations of binaural renderings of a sound moving along predefined trajectories on the horizontal and median planes. Its characteristics and advantages in describing data distributions based on perceptually relevant attributes are discussed. In addition, the use of 24 HRTFs from two different databases of origin allows for an evaluation of the perceptual impact of some database-dependent characteristics on binaural spatialization. The effectiveness of the experimental design and the correlation between the HRTF evaluations of the two plane trajectories are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ajdler T, Faller C, Sbaiz L, Vetterli M (2008) Sound field analysis along a circle and its applications to hrtf interpolation. J Audio Eng Soc 56(3):156–175. http://www.aes.org/e-lib/browse.cfm?elib=14380

  2. Andreopoulou A, Begault D, Katz B (2015) Inter-laboratory round robin HRTF measurement comparison. IEEE J Sel Top Signal Process 9(5):895–906. doi:10.1109/JSTSP.2015.2400417

    Article  Google Scholar 

  3. Andreopoulou A, Katz BFG (2015) On the use of subjective HRTF evaluations for creating global perceptual similarity metrics of assessors and assessees. In: 21st international conference on auditory display (ICAD), Graz, pp 13–20. https://smartech.gatech.edu/handle/1853/54095

  4. Andreopoulou A, Roginska A (2011) Towards the creation of a standardized HRTF repository. In: 131st Audio Engineering Society convention, New York, pp 1–6. http://www.aes.org/e-lib/browse.cfm?elib=16096

  5. Andreopoulou A, Roginska A, Bello JP (2011) Observing the clustering tendencies of head-related transfer function databases. In: 131st Audio Engineering Society convention, New York, pp 1–10. http://www.aes.org/e-lib/browse.cfm?elib=16065

  6. Carpentier T, Bahu H, Noisternig M, Warusfel O (2014) Measurement of a head-related transfer function database with high spatial resolution. In: Forum acousticum, pp 1–6. European Acoustics Association, Krakow. http://www.fa2014.agh.edu.pl/fa2014_cd/article/RS/R19_3

  7. Hofman PM, Van Riswick JG, Van Opstal AJ (1998) Relearning sound localization with new ears. Nat Neurosci 1(5):417–421. doi:10.1038/1633

    Article  Google Scholar 

  8. Iwaya Y (2006) Individualization of head-related transfer functions with tournament-style listening test: listening with other’s ears. Acoust Sci Technol 27(6):340–343. doi:10.1250/ast.27.340

    Article  Google Scholar 

  9. Katz BFG, Noisternig M (2014) A comparative study of interaural time delay estimation methods. J Acoust Soc Am 135(6):3530–3540. doi:10.1121/1.4875714

    Article  Google Scholar 

  10. Katz BFG, Parseihian G (2012) Perceptually based head-related transfer function database optimization. J Acoust Soc Am 131(2):EL99–EL105. doi:10.1121/1.3672641

    Article  Google Scholar 

  11. Lemaire V, Clérot F, Busson S, Nicol R, Choqueuse V (2005) Individualized HRTFs from few measurements: a statistical learning approach. In: July (ed.) IEEE international joint conference on neural networks, 2005, vol 4, pp 2041–2046. IEEE, Montreal. doi:10.1109/IJCNN.2005.1556214

  12. Macé MJM, Dramas F, Jouffrais C (2012) Reaching to sound accuracy in the peri-personal space of blind and sighted humans. In: Computers helping people with special needs, lecture notes in computer science, vol 7383, pp 636–643. Springer, Heidelberg. doi:10.1007/978-3-642-31534-3_93

  13. Makous JC, Middlebrooks JC (1990) Two-dimensional sound localization by human listeners. J Acoust Soc Am 87(5):2188–2200. doi:10.1121/1.399186

    Article  Google Scholar 

  14. Parseihian G, Katz B (2012) Rapid head-related transfer function adaptation using a virtual auditory environment. J Acoust Soc Am 131(4):2948–2957. doi:10.1121/1.3687448

    Article  Google Scholar 

  15. Roginska A, Santoro T, Wakefield G (2010) Stimulus-dependent HRTF preference. In: 129th Audio Engineering Society convention, San Francisco, pp. 1–11. http://www.aes.org/e-lib/browse.cfm?elib=15690

  16. Schönstein D, Katz B (2010) HRTF selection for binaural synthesis from a database using morphological parameters. In: 20th international congress on acoustics (ICA), Sydney, pp 1–6. http://www.acoustics.asn.au/conference_proceedings/ICA2010/cdrom-ICA2010/papers/p266

  17. Schönstein D, Katz B (2012) Variability in perceptual evaluation of HRTFs. J Audio Eng Soc 60(22):783–793. http://www.aes.org/e-lib/browse.cfm?elib=16552

  18. Warusfel O (2003) Listen HRTF database. http://recherche.ircam.fr/equipes/salles/listen/. Accessed 1 Sept 2015

  19. Wightman F, Kistler D (1993) Multidimensional scaling analysis of head-related transfer functions. In: IEEE workshop on applications of signal processing to audio and acoustics, pp 98–101. Waisman Center, Wisconsin University, Madison. doi:10.1109/ASPAA.1993.379987

  20. Wightman FL, Kistler DJ (1992) The dominant role of low-frequency interaural time differences in sound localization. J Acoust Soc Am 91(3):1648–1661. doi:10.1121/1.402445

    Article  Google Scholar 

  21. Xie B, Zhong X, He N (2015) Typical data and cluster analysis on head-related transfer functions from chinese subjects. Appl Acoust 94:1–13. doi:10.1016/j.apacoust.2015.01.022

    Article  Google Scholar 

  22. Zhong XL, Xie BS (2009) Maximal azimuthal resolution needed in measurements of head-related transfer functions. J Acoust Soc Am 125(4):2209–2220. doi:10.1121/1.3087433

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Areti Andreopoulou.

Additional information

This work was funded in part by the French FUI project BiLi (“Binaural Listening”, http://www.bili-project.org, FUI-AAP14).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreopoulou, A., Katz, B.F.G. Subjective HRTF evaluations for obtaining global similarity metrics of assessors and assessees. J Multimodal User Interfaces 10, 259–271 (2016). https://doi.org/10.1007/s12193-016-0214-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12193-016-0214-y

Keywords

Navigation