Skip to main content
Log in

Targeting HSP70 and GRP78 in canine osteosarcoma cells in combination with doxorubicin chemotherapy

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Heat shock proteins (HSPs) are molecular chaperones subdivided into several families based on their molecular weight. Due to their cytoprotective roles, these proteins may help protect cancer cells against chemotherapy-induced cell death. Investigation into the biologic activity of HSPs in a variety of cancers including primary bone tumors, such as osteosarcoma (OSA), is of great interest. Both human and canine OSA tumor samples have aberrant production of HSP70. This study assessed the response of canine OSA cells to inhibition of HSP70 and GRP78 by the ATP-mimetic VER-155008 and whether this treatment strategy could sensitize cells to doxorubicin chemotherapy. Single-agent VER-155008 treatment decreased cellular viability and clonogenic survival and increased apoptosis in canine OSA cell lines. However, combination schedules with doxorubicin after pretreatment with VER-155008 did not improve inhibition of cellular viability, apoptosis, or clonogenic survival. Treatment with VER-155008 prior to chemotherapy resulted in an upregulation of target proteins HSP70 and GRP78 in addition to the co-chaperone proteins Herp, C/EBP homologous transcription protein (CHOP), and BAG-1. The increased GRP78 was more cytoplasmic in location compared to untreated cells. Single-agent treatment also revealed a dose-dependent reduction in activated and total Akt. Based on these results, targeting GRP78 and HSP70 may have biologic activity in canine osteosarcoma. Further studies are required to determine if and how this strategy may impact the response of osteosarcoma cells to chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11(8):545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arap MA, Lahdenranta J, Mintz PJ, Hajitou A, Sarkis ÁS, Arap W, et al. (2004) Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 6(3):275–284

    Article  CAS  PubMed  Google Scholar 

  • Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, et al. (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the apaf-1 apoptosome. Nat Cell Biol 2(8):469–475

    Article  CAS  PubMed  Google Scholar 

  • Berg J, Gebhardt MC, Rand WM (1997) Effect of timing of postoperative chemotherapy on survival of dogs with osteosarcoma. Cancer 79(7):1343–1350

    Article  CAS  PubMed  Google Scholar 

  • Bergman PJ, MacEwen EG, Kurzman ID, Henry CJ, Hammer AS, Knapp DW, et al. (1996) Amputation and carboplatin for treatment of dogs with osteosarcoma: 48 cases (1991 to 1993). J Vet Intern Med 10(2):76–81

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  CAS  PubMed  Google Scholar 

  • Carpenter RL, Paw I, Dewhirst MW, Lo H-W (2015) Akt phosphorylates and activates HSF-1 independent of heat shock, leading to slug overexpression and epithelial–mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells. Oncogene 34:546–557

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee M, Andrulis M, Stuhmer T, Muller E, Hofmann C, Steinbrunn T, et al. (2013) The PI3K/akt signaling pathway regulates the expression of Hsp70 which critically contributes to Hsp90-chaperone function and tumor cell survival in multiple myeloma. Hematologica 98(7):1132–1141

    Article  CAS  Google Scholar 

  • Ding L, He S, Sun X (2014) HSP70 desensitizes osteosarcoma cells to baicalein and protects cells from undergoing apoptosis. Apoptosis 19(8):1269–1280

    Article  CAS  PubMed  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Ann Rev Physiol 61(1):243–282

    Article  CAS  Google Scholar 

  • Fu Y, Li J, Lee AS (2007) GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res 67(8):3734–3740

    Article  CAS  PubMed  Google Scholar 

  • Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI, et al. (1997) Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J Biol Chem 272(29):18033–18037

    Article  CAS  PubMed  Google Scholar 

  • Gabai VL, Zamulaeva IV, Mosin AF, Makarova YM, Mosina VA, Budagova KR, et al. (1995) Resistance of ehrlich tumor cells to apoptosis can be due to accumulation of heat shock proteins. FEBS Lett 375(1):21–26

    Article  CAS  PubMed  Google Scholar 

  • Gabai VL, Mabuchi K, Mosser DD, Sherman MY (2002) Hsp72 and stress kinase c-Jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis. Mol Cell Biol 22(10):3415–3424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassler CS, Wiederkehr T, Brehmer D, Bukau B, Mayer MP (2001) Bag-1M accelerates nucleotide release for human Hsc70 and Hsp70 and can act concentration-dependent as positive and negative cofactor. J Biol Chem 276(35):32538–32544

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Gronow M, Kaczowka SJ, Payne S, Wang F, Gawdi G, Pizzo SV (2007) Plasminogen structural domains exhibit different functions when associated with cell surface GRP78 or the voltage-dependent anion channel. J Biol Chem 282(45):32811–32820

    Article  CAS  PubMed  Google Scholar 

  • Gotoh T, Terada K, Oyadomari S, Mori M (2004) Hsp70-DnaJ chaperone pair prevents nitric oxide-and CHOP-induced apoptosis by inhibiting translocation of bax to mitochondria. Cell Death Differ 11(4):390–402

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Rocha K, Bali P, Pranpat M, Fiskus W, Boyapalle S, et al. (2005) Abrogation of heat shock protein 70 induction as a strategy to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res 65(22):10536–10544

    Article  CAS  PubMed  Google Scholar 

  • Gurbuxani S, Schmitt E, Cande C, Parcellier A, Hammann A, Daugas E, et al. (2003) Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene 22(43):6669–6678

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332

    Article  CAS  PubMed  Google Scholar 

  • Hohfeld J, Jentsch S (1997) GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 16(20):6209–6216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang WJ, Xia LM, Zhu F, Huang B, Zhou C, Zhu HF, et al. (2009) Transcriptional upregulation of HSP70-2 by HIF-1 in cancer cells in response to hypoxia. Int J Cancer 124(2):298–305

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11(8):579–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlseder J, Wissing D, Holzer G, Orel L, Sliutz G, Auer H, et al. (1996) HSP70 overexpression mediates the escape of a doxorubicin-induced G2 cell cycle arrest. Biochem Biophys Res Commun 220(1):153–159

    Article  CAS  PubMed  Google Scholar 

  • Khoury JF, Ben-Arush MW, Weintraub M, Waldman E, Futerman B, Vlodavsky E, et al. (2014) Alkaline phosphatase level change in patients with osteosarcoma: its role as a predictive factor of tumor necrosis and clinical outcome. Isr Med Assoc J 16(1):26–32

    PubMed  Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol (1985) 92(5):2177–2186

    Article  CAS  Google Scholar 

  • Lee HK, Xiang C, Cazacu S, Finniss S, Kazimirsky G, Lemke N, et al. (2008) GRP78 is overexpressed in glioblastomas and regulates glioma cell growth and apoptosis. Neuro-Oncology 10(3):236–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leu J, Pimkina J, Frank A, Murphy ME, George DL (2009) A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 36(1):15–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Liu L, Xing D, Chen WR (2010) Inhibition of the JNK/Bim pathway by Hsp70 prevents bax activation in UV-induced apoptosis. FEBS Lett 584(22):4672–4678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Steiniger SC, Kim Y, Kaufmann GF, Felding-Habermann B, Janda KD (2007) Mechanistic studies of a peptidic GRP78 ligand for cancer cell-specific drug delivery. Mol Pharm 4(3):435–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • London CA, Bear MD, McCleese J, Foley KP, Paalangara R, Inoue T, et al. (2011) Phase I evaluation of STA-1474, a prodrug of the novel HSP90 inhibitor ganetespib in dogs with spontaneous cancer. PLoS One 6(11):e27018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massey AJ, Williamson DS, Browne H, Murray JB, Dokurno P, Shaw T, et al. (2010) A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother Pharmacol 66(3):535–545

    Article  CAS  PubMed  Google Scholar 

  • Mauldin GN, Matus RE, Withrow SJ, Patnaik AK (1988) Canine osteosarcoma treatment by amputation versus amputation and adjuvant chemotherapy using doxorubicin and cisplatin. J Vet Intern Med 2:177–180

    Article  CAS  PubMed  Google Scholar 

  • Mayer M, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62(6):670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra UK, Deedwania R, Pizzo SV (2006) Activation and cross-talk between akt, NF-kappaB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78. J Biol Chem 281(19):13694–13707

    Article  CAS  PubMed  Google Scholar 

  • Misra UK, Gonzalez-Gronow M, Gawdi G, Hart JP, Johnson CE, Pizzo SV (2002) The role of grp 78 in alpha 2-macroglobulin-induced signal transduction. Evidence from RNA interference that the low density lipoprotein receptor-related protein is associated with, but not necessary for, GRP 78-mediated signal transduction. J Biol Chem 277(44):42082–42087

    Article  CAS  PubMed  Google Scholar 

  • Mustafi SB, Chakraborty PK, Raha S (2010) Modulation of akt and ERK1/2 pathways by resveratrol in chronic mylogenous leukemia (CML) cells results in the downregulation of Hsp70. PLoS One 5(1):e8719

    Article  Google Scholar 

  • Ni M, Zhang Y, Lee A (2011) Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signaling and therapeutic targeting. Biochem J 434:181–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranganathan AC, Zhang L, Adam AP, Aguirre-Ghiso JA (2006) Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res 66(3):1702–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS (2003) Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 278(23):20915–20924

    Article  CAS  PubMed  Google Scholar 

  • de Ridder GG, Ray R, Pizzo SV (2012) A murine monoclonal antibody directed against the carboxyl-terminal domain of GRP78 suppresses melanoma growth in mice. Melanoma Res 22(3):225–235

    Article  PubMed  Google Scholar 

  • Riggs JL, McAllister RM, Lennette EH (1974) Immunofluorescent studies of RD-114 virus replication in cell culture. J Gen Virol 25(1):21–29

  • Romanucci M, D’Amato G, Malatesta D, Bongiovanni L, Palmieri C, Ciccarelli A, et al. (2012) Heat shock protein expression in canine osteosarcoma. Cell Stress Chaperones 17(1):131–138

    Article  CAS  PubMed  Google Scholar 

  • Rosser MF, Washburn E, Muchowski PJ, Patterson C, Cyr DM (2007) Chaperone functions of the E3 ubiquitin ligase CHIP. J Biol Chem 282(31):22267–22277

    Article  CAS  PubMed  Google Scholar 

  • Ruchalski K, Mao H, Singh SK, Wang Y, Mosser DD, Li F, et al. (2003) HSP72 inhibits apoptosis-inducing factor release in ATP-depleted renal epithelial cells. Am J Physiol Cell Physiol 285(6):C1483–C1493

    Article  CAS  PubMed  Google Scholar 

  • Samali A, Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223(1):163–170

    Article  CAS  PubMed  Google Scholar 

  • Samali A, Fitzgerald U, Deegan S, Gupta S (2010) Methods for monitoring endoplasmic reticulum stress and the unfolded protein response. Int J Cell Biol 2010:830307

    PubMed  PubMed Central  Google Scholar 

  • Sondermann H, Scheufler C, Schneider C, Hohfeld J, Hartl FU, Moarefi I (2001) Structure of a bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science (New York, NY) 291(5508):1553–1557

    Article  CAS  Google Scholar 

  • Straw RC, Withrow SJ, Richter SL, Powers BE, Klein MK, Postorino NC, et al. (1991) Amputation and cisplatin for treatment of canine osteosarcoma. J Vet Intern Med 5(4):205–210

    Article  CAS  PubMed  Google Scholar 

  • Uozaki H, Ishida T, Kakiuchi C, Horiuchi H, Gotoh T, Iijima T, et al. (2000) Expression of heat shock proteins in osteosarcoma and its relationship to prognosis. Pathol Res Pract 196(10):665–673

    Article  CAS  PubMed  Google Scholar 

  • Wen W, Liu W, Shao Y, Chen L (2014) VER-155008, a small molecule inhibitor of HSP70 with potent anti-cancer activity on lung cancer cell lines. Exp Biol Med (Maywood) 239:638–645

    Article  Google Scholar 

  • Zhang Y, Liu R, Ni M, Gill P, Lee AS (2010) Cell surface relocalization of the endoplasmic reticulum chaperone and unfolded protein response regulator GRP78/BiP. J Biol Chem 285(20):15065–15075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang H, Jiang W, Zhang X, Qiu F, Gan Z, Cheng W, et al. (2013) Suppression of HSP70 expression sensitizes NSCLC cell lines to TRAIL-induced apoptosis by upregulating DR4 and DR5 and downregulating c-FLIP-L expressions. J Mol Med (Berl) 91(2):219–235

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the OVC Department of Biomedical Sciences, OVC Dean’s office, and a memorial donation through the University of Guelph Alumni Affairs and Development office. J. Asling was supported by a graduate stipend from the Art Rouse Cancer Biology fund at OVC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Mutsaers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asling, J., Morrison, J. & Mutsaers, A.J. Targeting HSP70 and GRP78 in canine osteosarcoma cells in combination with doxorubicin chemotherapy. Cell Stress and Chaperones 21, 1065–1076 (2016). https://doi.org/10.1007/s12192-016-0730-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-016-0730-4

Keywords

Navigation