Skip to main content
Log in

Crocin and Quercetin protect HCT116 and HEK293 cells from Zearalenone-induced apoptosis by reducing endoplasmic reticulum stress

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Mycotoxins are considered to be significant contaminants of food and animal feed. Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by several species of Fusarium in cereals and agricultural products. ZEN has been shown to be cytotoxic, genotoxic, and mutagenic in different cell types. In the present study, we investigated the involvement of endoplasmic reticulum (ER) stress in ZEN-mediated toxicity in human intestine (HCT116) and kidney (HEK293) cells and evaluated the effects of the two common dietary compounds Quercetin (QUER) and Crocin (CRO). We show that ZEN treatment induces ER stress and activates the unfolded protein response (UPR) as evidenced by XBP1 mRNA splicing and upregulation of GRP78, ATF4, GADD34, PDIA6, and CHOP. Activation of the ER stress response is associated with activation of the mitochondrial pathway of apoptosis. This apoptotic process is characterized by an increase in ROS generation and lipid peroxidation, a loss of mitochondrial transmembrane potential (ΔΨm), and an activation of caspases and DNA damages. We also demonstrate that the antioxidant properties of QUER and CRO help to prevent ER stress and reduce ZEN-induced apoptosis in HCT116 and HEK293 cells. Our results suggest that antioxidant molecule might be helpful to prevent ZEN-induced ER stress and toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ZEN:

Zearalenone

CRO:

Crocin

QUER:

Quercetin

ER:

Endoplasmic reticulum

ΔΨm:

Mitochondrial transmembrane potential

mtO2 ·− :

Mitochondrial superoxide anion

References

  • Abbes S, Ouanes Z, Ben Salah-Abbes J, Houas Z, Oueslati R, Bacha H (2006a) The protective effect of hydrated sodium calcium aluminosilicate against haematological, biochemical and pathological changes induced by zearalenone in mice. Toxicon 47:567–574

    Article  CAS  PubMed  Google Scholar 

  • Abbes S, Salah-Abbes JB, Ouanes Z, Houas Z, Othman O, Bacha H (2006b) Preventive role of phyllosilicate clay on the immunological and biochemical toxicity of zearalenone in Balb/c mice. Int Immunopharmacol 6:1251–1258

    Article  CAS  PubMed  Google Scholar 

  • Abbes S, Ouanes Z, Ben Salah-Abbes J, Abdel-Wahhab MA, Oueslati R, Bacha H (2007) Preventive role of aluminosilicate clay against induction of micronuclei and chromosome aberrations in bone-marrow cells of Balb/c mice treated with zearalenone. Mutat Res 631:85–92

    Article  CAS  PubMed  Google Scholar 

  • Abid-Essefi S, Baudrimont I, Hassen W, Ouanes Z, Mobio TA, Anane R (2003) DNA fragmentation, apoptosis and cell cycle arrest induced by zearalenone in cultured DOK, Vero and Caco-2 cells: prevention by vitamin E. Toxicology 192:237–248

    Article  CAS  PubMed  Google Scholar 

  • Abid-Essefi S, Ouanes Z, Hassen W, Baudrimont I, Creppy EE, Bacha H (2004) Cytotoxicity, inhibition of DNA and protein syntheses and oxidative damage in cultured cells exposed to zearalenone. Toxicol In Vitro 4:467–474

    Article  Google Scholar 

  • Abid-Essefi S, Zaied C, Bouaziz C, Ben Salem I, Kaderi R, Bacha H (2012) Protective effect of aqueous extract of Allium sativum against zearalenone toxicity mediated by oxidative stress. Exp Toxicol Pathol 64:689–695

    Article  CAS  PubMed  Google Scholar 

  • Akazawa Y, Cazanave S, Mott JL, Elmi N, Bronk SF, Kohno S, Anjaneyulu M, Chopra K (2004) Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 31:244–248

    Article  Google Scholar 

  • Anjaneyulu M, Chopra K (2004) Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 31:244–248

    Article  CAS  PubMed  Google Scholar 

  • Banjerdpongchai R, Kongtawelert P, Khantamat O, Srisomsap C, Chokchaichamnankit D, Subhasitanont P, Svasti J (2010) Mitochondrial and endoplasmic reticulum stress pathways cooperate in zearalenone-induced apoptosis of human leukemic cells. J Hematol Oncol 3:1–16

    Article  Google Scholar 

  • Baumeister P, Luo S, Skarnes WC, Sui G, Seto E, Shi Y, Lee AS (2005) Endoplasmic reticulum stress induction of the Grp78/BiP promoter: activating mechanisms mediated by YY1 and its interactive chromatin modifiers. Mol Cell Biol 25:4529–4540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ben Salah-Abbes J, Abbes S, Abdel-Wahhab M, Oueslati R (2009) Raphanus sativus extract protects against zearalenone induced reproductive toxicity, oxidative stress and mutagenic alterations in male Balb/c mice. Toxicon 53:525–533

    Article  CAS  PubMed  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins Clin Microbiol Rev 16:497–516

    Article  CAS  PubMed  Google Scholar 

  • Bhatt K, Flora SJS (2009) Oral cp-administration of α-lipoic acid, quercetin and captopril prevents gallium arsenide toxicity in rats. Environ Toxicol Pharmacol 28:140–146

    Article  CAS  PubMed  Google Scholar 

  • Bouaziz C, Sharaf El Dein O, El Golli E, Abid-Essefi S, Brenner C, Lemaire C, Bacha H (2008) Different apoptotic pathways induced by zearalenone, T-2 toxin and ochratoxin A in human hepatoma cells. Toxicology 254:19–28

    Article  CAS  PubMed  Google Scholar 

  • Bouaziz C, Martel C, Sharaf OD, Abid-Essefi S, Brenner C, Lemaire C, Bacha H (2009) Fusarial toxin-induced toxicity in cultured cells and in isolated mitochondria involves PTPC-dependent activation of the mitochondrial pathway of apoptosis. Toxicol Sci 110:363–375

    Article  CAS  PubMed  Google Scholar 

  • Bryden WL (2012) Mycotoxin contamination of the feed supply chain: implications for animal productivity and feed security. Anim Feed Sci Technol 173:134–158

    Article  CAS  Google Scholar 

  • Collins AR, Dusinska M, Gedik CM, Stetina R (1996) Oxidative damage to DNA: do we have a reliable biomarker? Environ Health Perspect 104:465–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conkova E, Laciakova A, Pastorova B, Seidel Kovac G (2001) The effect of zearalenone on some enzymatic parameters in rabbits. Toxicol Lett 121:145–149

    Article  CAS  PubMed  Google Scholar 

  • El Golli E, Hassen W, Bouslimi A, Bouaziz C, Ladjimi MM, Bacha H (2006) Induction of Hsp 70 in Vero cells in response to mycotoxins cytoprotection by sub-lethal heat shock and by vitamin E. Toxicol Lett 166:122–130

    Article  PubMed  Google Scholar 

  • Fung F, Clark R (2004) Health effects of mycotoxins: a toxicological overview. I Toxicol 42:217–234

    CAS  Google Scholar 

  • Habschied K, Sarkanj B, Klapec T, Krstanovic V (2011) Distribution of zearalenone in malted barley fractions dependent on Fusarium graminearum growing conditions. Food Chem 129:329–332

    Article  CAS  Google Scholar 

  • Hanasaki Y, Ogawa S, Fukui S (1994) The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic Biol Med 16:845–850

    Article  CAS  PubMed  Google Scholar 

  • Hassen W, Ayed-Boussema I, Oscoz AA, De Cerain LA, Bacha H (2007) The role of oxidative stress in zearalenone-mediated toxicity in Hep G2 cells: oxidative DNA damage, glutathione depletion and stress proteins induction. Toxicology 232:294–302

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Sadeghnia HR, Ziaee T, Danaee A (2005) Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. J Pharm Sci 8(3):387–393

    CAS  Google Scholar 

  • Hosseinzadeh H, Modaghegh MH, Saffari Z (2009) Crocus sativus L. (saffron) extract and its active constituents (crocin and safranal) on ischemia-reperfusion in rat skeletal muscle. Evid Based Complement Alternat Med 6(3):343–350

    Article  PubMed Central  PubMed  Google Scholar 

  • Hosseinzadeh H, Shamsaie F, Mehri S (2010) Antioxidant activity of aqueous and ethanolic extracts of Crocus sativus L. stigma and its bioactive constituents crocin and safranal. Pharmacogn Mag 5(20):419–424

    Google Scholar 

  • Jia Z, Liu M, Qu Z, Zhang Y, Yin S, Shan A (2014) Toxic effects of zearalenone on oxidative stress, inflammatory cytokines, biochemical and pathological changes induced by this toxin in the kidney of pregnant rats. Environ Toxicol Pharmacol 37:580–591

    Article  CAS  PubMed  Google Scholar 

  • Kobylińska A, Janas KM (2015) Health-promoting effect of quercetin in human diet. Postepy Hig Med Dosw 69:51–62

    Article  Google Scholar 

  • Kuiper-Goodman T, Scoot PM, Watanabe H (1987) Risk assessment of the mycotoxin zearalenone. Regul Toxicol Pharmacol 7:253–306

    Article  CAS  PubMed  Google Scholar 

  • Le Bel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2-,7-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  Google Scholar 

  • Le Bras M, Clément MV, Pervaiz S, Brenner C (2005) Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol 20:205–220

    PubMed  Google Scholar 

  • Liang ZS, MA YJ, Liu CY, Deng XB, Fan XL, Yan HK, Hu QX (2010). In 583 vivo toxicity of zearalenone on liver and kidney in mice. Chinese Journal of 584 Veterinary Science. 30:673–676

  • Loke WM, Proudfoot JM, McKinley AJ (2008) Quercetin and its in vivo metabolites inhibit neutrophil-mediated low-density lipoprotein oxidation. J Agric Food Chem 56:3609–3615

    Article  CAS  PubMed  Google Scholar 

  • Loke WM, Proudfoot JM, Hodgson JM (2010) Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E knockout mice by alleviating inflammation and endothelial dysfunction. Arterioscler Thromb Vasc Biol 30:749–757

    Article  CAS  PubMed  Google Scholar 

  • Maaroufi K, Chekir L, Creppy EE, Ellouz F, Bacha H (1996) Zearalenone induces modifications of haematological and biochemical parameters in rats. Toxicon 34:535–540

    Article  CAS  PubMed  Google Scholar 

  • Morris JA, Dorner AJ, Edwards CA, Hendershot LM, Kaufman RJ (1997) Immunoglobulin binding protein (BiP) function is required to protect cells from endoplasmic reticulum stress but is not required for the secretion of selective proteins. J Biol Chem 272(7):4327–4334

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SH, Tayarani NZ, Parsaee H (2010) Protective effect of saffron extract and crocin on reactive oxygen species-mediated high glucose-induced toxicity in PC12 cells. Cell Mol Neurobiol 30(2):185–191

    Article  CAS  PubMed  Google Scholar 

  • Murata H, Sultana P, Shimada N, Yashioka M (2003) Structure activity relationships among zearalenone and its derivatives based on bovine neutrophil chemiluminescence. Vet Hum Toxicol 1:18–20

    Google Scholar 

  • Obremski K, Zielonka L, Zaluska G, Zwierzchowski W, Pirus K, Gajecki M (1999) The influence of low doses of zearalenone on liver enzyme activities in gilts. In: Proceedings of the X conference “Microscopy Fungi – plant pathogens and their metabolites”: 66

  • Ochiai T, Ohno S, Soeda S, Tanaka H, Shoyama Y, Shimeno H (2004a) Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those of a-tocopherol. Neurosci Lett 362(1):61–64

    Article  CAS  PubMed  Google Scholar 

  • Ochiai T, Soeda S, Ohno S, Tanaka H, Shoyama Y, Shimeno H (2004b) Crocin prevents the death of PC-12 cells through sphingomyelinase-ceramide signaling by increasing glutathione synthesis. Neurochem Int 44(5):321–330

    Article  CAS  PubMed  Google Scholar 

  • Ochiai T, Shimeno H, Mishima K, Iwasaki K, Fujiwara M, Tanaka H, Shoyama Y, Toda A, Eyanagi R, Soeda S (2007) Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim Biophys Acta 1770(4):578–584

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Ouanes Z, Abid S, Ayed I, Anane R, Mobio T, Creppy EE, Bacha H (2003) Induction of micronuclei by zearalenone in Vero monkey kidney cells and in bone marrow cells of mice: protective effect of vitamin E. Mutation Research/Genetic Toxicology and Environ Mutagenesis 538:63–70

    Article  CAS  Google Scholar 

  • Ouanes Z, Ayed-Boussema I, Baati T, Creppy EE, Bacha H (2005) Zearalenone induces chromosome aberrations in mouse bone marrow: preventive effect of 17betaestradiol, progesterone and vitamin E. Mutat Res 565:139–149

    Article  CAS  PubMed  Google Scholar 

  • Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Görgün CZ, Hotamisligil GS (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–1140

    Article  PubMed  Google Scholar 

  • Rios JL, Recio MC, Giner RM, Manez S (1996) An update review of saffron and its active constituents. Phytother Res 10(3):189–193

    Article  CAS  Google Scholar 

  • Rodrigues I, Naehrer K (2012) A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. X 4:663–675

    CAS  Google Scholar 

  • Romero M, Jiménez R, Sánchez M (2009) Quercetin inhibits vascular superoxide production induced by endothelin-1: role of NADPH oxidase, uncoupled eNOS and PKC. Atherosclerosis 202:58–67

    Article  CAS  PubMed  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  CAS  PubMed  Google Scholar 

  • Sanchez M, Galisteo M, Vera R (2006) Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J Hypertens 24:75–84

    Article  CAS  PubMed  Google Scholar 

  • Santos XC, Tanaka LY, Wosniak JJ, Laurindo FRM (2009) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxidants & Redox Signaling 11:2409–2427

    Article  CAS  Google Scholar 

  • Sharaf el dein O, Gallerne C, Deniaud A, Brenner C, Lemaire C (2009) Role of the permeability transition pore complex in lethal inter-organelle crosstalk. Front Biosci 14:3465–3482

    Article  Google Scholar 

  • Su CM, Wang SW, Lee TH, Tzeng WP, Hsiao CJ, Liu SC, Tang CH (2013) Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells. Toxicol Appl Pharmacol 272:335–344

    Article  CAS  PubMed  Google Scholar 

  • Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7(9):880–885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13:184–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vaca CE, Wilhelm J, Harms-Ringdahl M (1988) Interaction of lipid peroxidation product with DNA. Mutat Res 195:137–149

    Article  CAS  PubMed  Google Scholar 

  • Van Schadewijk A, Van’t Wout EF, Stolk J, Hiemstra PS (2012) A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress. Cell Stress Chaperones 17:275–279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang H, Park SH, Choi HJ, Do KH, Kim J, An TJ, Lee SH, Moon Y (2010) Mechanism-based alternative monitoring of endoplasmic reticulum stress by 8-keto-trichothecene mycotoxins using human intestinal epithelial cell line. Toxicol Lett 198:317–323

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  CAS  PubMed  Google Scholar 

  • Zain ME (2011) Impact of mycotoxins on humans and animals. J Soudi Chem Soc 15:129–144

    Article  CAS  Google Scholar 

  • Zhou C, Zhang Y, Yin S, Jia Z, Shan A (2015) Biochemical changes and oxidative stress induced by zearalenone in the liver of pregnant rats. Hum Exp Toxicol 34:65–73

    Article  CAS  PubMed  Google Scholar 

  • Zinedine A, Jose MS, Juan CM, Manes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45:1–18

    Article  CAS  PubMed  Google Scholar 

  • Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zorgui L, Ayed-Boussema I, Ayed Y, Bacha H, Hassen W (2009) The antigenotoxic activities of cactus (Opuntia ficus-indica) cladodes against the mycotoxin zearalenone in Balb/c mice: prevention of micronuclei, chromosome aberrations and DNA fragmentation. Food Chem Toxicol 47:662–667

    Article  CAS  PubMed  Google Scholar 

  • Zourgui L, El Golli E, Bouaziz C, Bacha H, Hassen W (2008) Cactus (Opuntia ficus-indica) cladodes prevent oxidative damage induced by the mycotoxin zearalenone in Balb/C mice. Food Chem Toxicol 46:1817–1824

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by “Le Ministère Tunisien de l’Enseignement Supérieur, de la Recherche Scientifique et de la Technologie” and by grants from LabEx LERMIT. A. Prola received a fellowship from GRRC. A. Guilbert received a fellowship from Région Ile de France CORDDIM.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salwa Abid-Essefi.

Additional information

Highlights

Zearalenone triggers ER stress in human intestinal and kidney cells

Zearalenone induces apoptosis through ER stress and activation of the mitochondrial pathway

Crocin and Quercetin protect cells against ZEN-induced ER stress and apoptosis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Salem, I., Prola, A., Boussabbeh, M. et al. Crocin and Quercetin protect HCT116 and HEK293 cells from Zearalenone-induced apoptosis by reducing endoplasmic reticulum stress. Cell Stress and Chaperones 20, 927–938 (2015). https://doi.org/10.1007/s12192-015-0613-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-015-0613-0

Keywords

Navigation