Skip to main content
Log in

Characterization of CCTα and evaluating its expression in the mud crab Scylla paramamosain when challenged by low temperatures alone and in combination with high and low salinity

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Chaperonin containing the T-complex polypeptide-1 (CCT), which is known to be involved in intracellular assembly and folding of proteins, is a class of chaperonin omnipresent in all forms of life. Previous studies showed that CCT played a vital role in cold hardiness of various animals. In order to understand the response of the polypeptide complex to low temperature challenge and other environmental stresses, a subunit of CCT (CCTα) was cloned from the mud crab Scylla paramamosain by expressed sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE). The full-length cDNA SpCCTα was of 1972 bp and contained a 1668 bp open reading frame (ORF) encoding a polypeptide of 555 amino acids with four conserved motifs. The messenger ribonucleic acid (mRNA) levels of SpCCTα in ten tissues of adult S. paramamosain was subsequently examined and the highest expression was found in muscle, followed by gill, hepatopancreas, thoracic ganglion, hemocyte, heart, cerebral ganglion, stomach, eyestalk ganglion, and epidermis. The expressions of SpCCTα in the muscle of sub-adult crabs (pre-acclimated to 28 °C) subjected to the challenges of both lower temperatures (25, 20, 15, and 10 °C) alone and low temperatures (15 and 10 °C) in combination with salinity of 35 and 10 were further investigated by fluorescent quantitative real-time PCR (qPCR). It was revealed that when exposed to lower temperatures alone, the mRNA transcripts of the SpCCTα gene in the muscle were generally induced for significant higher expression at 10 °C treatment than the 25, 20, and 15 °C treatments; meanwhile, exposure to 15 °C also frequently led to significantly higher expression than those at 20 and 25 °C. This finding indicated that the up-regulation of SpCCTα was closely related to the cold hardiness of S. paramamosain. The results of an additional experiment challenging the sub-adult crabs with various combinations of low temperatures with different salinity conditions generally demonstrated that at both 10 and 15 °C, the expression of SpCCTα under the high salinity of 35 was significantly lower than that at low salinity of 10, implying that the damages caused by low temperatures with high salinity were less than that under low salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arockiaraj J, Vanaraja P, Easwvaran S, Singh A, Yasmin OR, Bhassu S (2012) Molecular functions of chaperonin gene, containing tailless complex polypeptide 1 from Macrobrachium rosenbergii. Gene 508:241–249

    Article  CAS  PubMed  Google Scholar 

  • Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170

    Article  CAS  PubMed  Google Scholar 

  • Camasses A, Bogdanova A, Shevchenko A, Zachariae W (2003) The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20. Mol Cell 12:87–100

    Article  CAS  PubMed  Google Scholar 

  • Chagoyen M, Carrascosa JL, Pazos F, Valpuesta JM (2014) Molecular determinants of the ATP hydrolysis asymmetry of the CCT chaperonin complex. Proteins 82:703–707

    Article  CAS  PubMed  Google Scholar 

  • Chen JC, Chia PG (1996) Oxygen uptake and nitrogen excretion of juvenile Scylla serrata at different temperature and salinity levels. J Crustac Biol 16:437–442

    Article  Google Scholar 

  • Dekker C, Stirling PC, McCormack EA, Filmore H, Paul A, Brost RL, Costanzo M, Boone C, Leroux MR, Willison KR (2008) The interaction network of the chaperonin CCT. Embo J 27:1827–1839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Domingues C, Soares H, Pousada CR, Cyrne L (1999) Structure of Tetrahymena CCTθ gene and its expression under colchicine treatment. BBA-Gene Struct Expr 1446:443–449

    Article  CAS  Google Scholar 

  • Dun MD, Aitken RJ, Nixon B (2012) The role of molecular chaperones in spermatogenesis and the post-testicular maturation of mammalian spermatozoa. Hum Reprod Update 18:420–435

    Article  PubMed  Google Scholar 

  • Eisenberg D (1984) Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem 53:595–623

    Article  CAS  PubMed  Google Scholar 

  • Fan LF, Wang AL, Wu YX (2013) Comparative proteomic identification of the hemocyte response to cold stress in white shrimp, Litopenaeus vannamei. J Proteomics 80:196–206

    Article  CAS  PubMed  Google Scholar 

  • Gong J, Yu K, Shu L, Ye HH, Li SJ, Zeng C (2015) Evaluating the effects of temperature, salinity, starvation and autotomy on molting success, molting interval and expression of ecdysone receptor in early juvenile mud crabs, Scylla paramamosain. J Exp Mar Biol Ecol 464:11–17

    Article  Google Scholar 

  • Guenther MG, Yu J, Kao GD, Yen TJ, Lazar MA (2002) Assembly of the SMRT-histone deacetylase 3 repression complex requires the TCP-1 ring complex. Genes Dev 16:3130–3135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamasaki K (2002) Effects of temperature on the survival, spawning and egg incubation period of overwintering mud crab broodstock, Scylla paramamosain (Brachyura: Portunidae). Suisan Zoshoku 50:301–308

    Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  • Jelinsky SA, Samson LD (1999) Global response of Saccharomyces cerevisiae to an alkylating agent. Proc Natl Acad Sci U S A 96:1481–1491

    Article  Google Scholar 

  • Jiang JX, Lin W, Zhang HL, Chen Z, Tu Q, Jiang Y, Yu L, Zhao SY (2000) Cloning, expression and mapping of the full-length cDNA of human CCTβ subunit. Chin Sci Bull 45:2034–2041

    Article  CAS  Google Scholar 

  • Kayukawa T, Ishikawa Y (2009) Chaperonin contributes to cold hardiness of the onion maggot Delia antiqua through repression of depolymerization of actin at low temperatures. PLoS One 4(12):e8277

    Article  PubMed Central  PubMed  Google Scholar 

  • Kayukawa T, Chen B, Miyazaki S, Itoyama K, Shinoda T, Ishikawa Y (2005) Expression of mRNA for the t;chcomplex polypeptide-1, a subunit of chaperonin CCT, is upregulated in association with increased cold hardiness in Delia antiqua. Cell Stress Chaperones 10:204–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Ulrich Hartl F (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355

    Article  CAS  PubMed  Google Scholar 

  • Knee KM, Sergeeva OA, King JA (2013) Human TRiC complex purified from HeLa cells contains all eight CCT subunits and is active in vitro. Cell Stress and Chaperones 18:137–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kong XH, Wang GZ, Li SJ (2012) Effects of low temperature acclimation on antioxidant defenses and ATPase activities in the muscle of mud crab (Scylla paramamosain). Aquaculture 370:144–149

    Article  Google Scholar 

  • Kubota H, Hynes GM, Kerr SM, Willison KR (1997) Tissue specific subunit of the mouse cytosolic chaperonin-containing TCP-1. FEBS Lett 402:53–56

    Article  CAS  PubMed  Google Scholar 

  • Kubota H, Yokota S, Yanagi H, Yura T (1999) Structures and co-regulated expression of the genes encoding mouse cytosolic chaperonin CCT subunits. Eur J Biochem 262:492–500

    Article  CAS  PubMed  Google Scholar 

  • Likongwe JS, Stecko TD, Stauffer JR, Carline RF (1996) Combined effects of water temperature and salinity on growth and feed utilization of juvenile Nile tilapia Oreochromis niloticus (Linneaus). Aquaculture 146:37–46

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu YL, Wang F, Jia XY, Gao QF, Dong SL (2013) A laboratory simulation of the effects of acute salinity decrease on osmoregulation and Hsps expression in the swimming crab, Portunus trituberculatus: implications for aquaculture. Mar Freshw Behav Physiol 46:301–311

    Article  CAS  Google Scholar 

  • McAllen R, Block W (1997) Aspects of the cryobiology of the intertidal haroacticoid copepod Tigriopus brevicornis (O.F. Müller). Cryobiology 35:309–317

    Article  PubMed  Google Scholar 

  • McGaw IJ, Whiteley NM (2012) Effects of acclimation and acute temperature change on specific dynamic action and gastric processing in the green shore crab, Carcinus maenas. J Therm Biol 37:570–578

    Article  Google Scholar 

  • Muñoz IG, Yébenes H, Zhou M, Mesa P, Serna M, Park AY, Montoya G (2011) Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nat Struct Mol Biol 18:14–19

    Article  PubMed  Google Scholar 

  • Nurdiani R, Zeng C (2007) Effects of temperature and salinity on the survival and development of mud crab, Scylla serrata (Forsskål), larvae. Aquac Res 38:1529–1538

    Article  Google Scholar 

  • Paital B, Chainy GBN (2010) Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Comp Biochem Physiol C: Toxicol Pharmacol 151:142–151

    Google Scholar 

  • Palmedo G, Ammermann D (1997) Cloning and characterization of the Oxytricha granulifera chaperonin containing tailless complex polypeptide 1 γ gene. Eur J Biochem 247:877–883

    Article  CAS  PubMed  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  CAS  PubMed  Google Scholar 

  • Phipps BM, Typke D, Hegerl R, Volker S, Hoffmann A, Stetter KO, Baumeister W (1993) Structure of a molecular chaperone from a thermophilic archaebacterium. Nature 361:475–477

    Article  CAS  Google Scholar 

  • Posokhova E, Song H, Belcastro M, Higgins L, Bigley LR, Michaud NA, Martemyanov K, Sokolov M (2011) Disruption of the chaperonin containing TCP-1 function affects protein networks essential for rod outer segment morphogenesis and survival. Mol Cell Proteomics 10:1–12

    Article  CAS  Google Scholar 

  • Quintá HR, Galigniana NM, Erlejman AG, Lagadari M, Piwien-Pilipuk G, Galigniana MD (2011) Management of cytoskeleton architecture by molecular chaperones and immunophilins. Cell Signal 23:1907–1920

    Article  PubMed Central  PubMed  Google Scholar 

  • Romano N, Zeng C (2006) The effects of salinity on the survival, growth and haemolymph osmolality of early juvenile blue swimmer crabs, Portunus pelagicus. Aquaculture 260:151–162

    Article  Google Scholar 

  • Ruano-Rubio V, Fares MA (2007) Testing the neutral fixation of hetero-oligomerism in the archaeal chaperonin CCT. Mol Biol Evol 24:1384–1396

    Article  CAS  PubMed  Google Scholar 

  • Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW (1996) Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci U S A 93:10614–10619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shelley C, Lovatelli A (2012) Mud crab aquaculture: a practical manual. Food and Agriculture Organization of the United Nations, Rome, pp 41–45

    Google Scholar 

  • Shimon L, Hynes GM, McCormack EA, Willison KR, Horovitz A (2008) ATP-induced allostery in the eukaryotic chaperonin CCT is abolished by the mutation G345D in CCT4 that renders yeast temperature-sensitive for growth. J Mol Biol 377:469–477

    Article  CAS  PubMed  Google Scholar 

  • Silvia GJ, Antonio URA, Franscisco VO, Georginia HW (2004) Ammonia efflux rates and free amino acid levels in Litopenaeus vannamei postlarvae during sudden salinity changes. Aquaculture 233:573–581

    Article  CAS  Google Scholar 

  • Soares H, Penque D, Mouta C, Rodrigues-Pousada C (1994) A Tetrahymena orthologue of the mouse chaperonin subunit CCTg and its coexpression with tubulin during cilia recovery. J Biol Chem 269:29299–29307

    CAS  PubMed  Google Scholar 

  • Somer L, Shmulman O, Dror T, Hashmueli S, Kashi Y (2002) The eukaryote chaperonin CCT is a cold shock protein in Saccharomyces cerevisiae. Cell Stress Chaperones 7:47–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spiess C, Miller EJ, McClellan AJ, Frydman J (2006) Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins. Mol Cell 24:25–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tomanek L (2011) Environmental proteomics: changes in the proteome of marine organisms in response to environmental stress, pollutants, infection, symbiosis, and development. Annu Rev Mar Sci 3:373–399

    Article  Google Scholar 

  • Trent JD, Nimmesgern E, Wall JS, Hartl EU, Horwich AL (1991) A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354:490–493

    Article  CAS  PubMed  Google Scholar 

  • Upadhya GA, Strasberg SM (1999) Evidence that actin disassembly is a requirement for matrix metalloproteinase secretion by sinusoidal endothelial cells during cold preservation in the rat. Hepatology 30:169–176

    Article  CAS  PubMed  Google Scholar 

  • Ursic D, Culbertson MR (1992) Is yeast TCP1 a chaperonin? Nature 356:392–392

    CAS  PubMed  Google Scholar 

  • Walton ME, Le VL, Lebata JH, Binas J, Primavera JH (2006) Seasonal abundance, distribution and recruitment of mud crabs (Scylla spp.) in replanted mangroves. Estuar Coast Shelf Sci 66:493–500

    Article  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Xia XA, Wu QY, Li YY, Wang SQ, You CH, Lin YS (2010) Isolation and identification of two bacterial pathogens from mixed infection mud crab Scylla serrata and drug therapy. J Trop Oceanogr 29:103–110

    Google Scholar 

  • Yamada A, Sekiguchi M, Mimura T, Ozeki Y (2002) The role of plant CCTα in salt- and osmotic-stress tolerance. Plant Cell Physiol 43:1043–1048

    Article  CAS  PubMed  Google Scholar 

  • Yang YN, Ye HH, Huang HY, Li SJ, Zeng XL, Gong J, Huang XS (2013a) Characterization and expression of SpHsp60 in hemocytes after challenge to bacterial, osmotic and thermal stress from the mud crab Scylla paramamosain. Fish Shellfish Immunol 35:1185–1191

    Article  CAS  PubMed  Google Scholar 

  • Yang YN, Ye HH, Huang HY, Li SJ, Liu XL, Zeng XL, Gong J (2013b) Expression of Hsp70 in the mud crab, Scylla paramamosain in response to bacterial, osmotic, and thermal stress. Cell Stress Chaperones 18:475–482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye H, Tao Y, Wang G, Lin Q, Chen X, Li S (2011) Experimental nursery culture of the mud crab Scylla paramamosain (Estampador) in China. Aquac Int 19:313–321

    Article  CAS  Google Scholar 

  • Yin Q, Peng JX, Cui L, Xie DX, Wang ZW, Li K, Chen XH (2011) Molecular cloning of Litopenaeus vannamei TCP-1-eta gene and analysis on its relationship with cold tolerance. Hereditas (Beijing) 33:168–174

    Article  CAS  Google Scholar 

  • Yokota S, Hirata D, Minota S, Higashiyama T, Kurimoto M, Yanagi H, Yura T, Kubota H (2000a) Autoantibodies against chaperonin CCT in human sera with rheumatic autoimmune diseases: comparison with antibodies against other Hsp60 family proteins. Cell Stress Chaperones 5:337–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yokota S, Yanagi H, Yura T, Kubota H (2000b) Upregulation of cytosolic chaperonin CCT subunits during recovery from chemical stress that causes accumulation of unfolded proteins. Eur J Biochem 267:1658–1664

    Article  CAS  PubMed  Google Scholar 

  • Zeng C (2007) Induced out-of-season spawning of the mud crab, Scylla paramamosain (Estampador) and effects of temperature on embryo development. Aquac Res 38:1478–1485

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 31472294). We would also like to sincerely thank the two anonymous reviewers for their valuable comments that improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haihui Ye or Chaoshu Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Gong, J., Huang, C. et al. Characterization of CCTα and evaluating its expression in the mud crab Scylla paramamosain when challenged by low temperatures alone and in combination with high and low salinity. Cell Stress and Chaperones 20, 853–864 (2015). https://doi.org/10.1007/s12192-015-0612-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-015-0612-1

Keywords

Navigation