Skip to main content
Log in

Methionine protects against hyperthermia-induced cell injury in cultured bovine mammary epithelial cells

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The aim of this study was to investigate the effects of methionine on cell proliferation, antioxidant activity, apoptosis, the expression levels of related genes (HSF-1, HSP70, Bax and Bcl-2) and the expression levels of protein (HSP70) in mammary epithelial cells, after heat treatment. Methionine (60 mg/L) increased the viability and attenuated morphological damage in hyperthermia-treated bovine mammary epithelial cells (BMECs). Additionally, methionine significantly reduced lactate dehydrogenase leakage, malondialdehyde formation, nitric oxide, and nitric oxide synthase activity. Superoxide dismutase, catalase, and glutathione peroxidase enzymatic activity was increased significantly in the presence of methionine. Bovine mammary epithelial cells also exhibited a certain amount of HSP70 reserve after methionine pretreatment for 24 h, and the expression level of the HSP70 gene and protein further increased with incubation at 42 °C for 30 min. Compared to the control, the expression of HSF-1 mRNA increased, and there was a significantly reduced expression of Bax/Bcl-2 mRNA and a reduced activity of caspase-3 against heat stress. Methionine also increased survival and decreased early apoptosis of hyperthermia-treated BMECs. Thus, methionine has cytoprotective effects on hyperthermia-induced damage in BMECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Beere HM, Green DR (2001) Stress management-heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol 11(1):6–10

    Article  CAS  PubMed  Google Scholar 

  • Breillout F, Antoine E, Poupon MF (1990) Methionine dependency of malignant tumors: a possible approach for therapy. J Nat Cancer Inst 82:1625–1632

    Article  Google Scholar 

  • Chang MX (2003) The impact of high temperatures on milk. China Herbivores 3:43–44

    Google Scholar 

  • Chang SF, Sun YY, Yang LY (2005) Bcl-2 gene family expression in the brain of rat offspring after gestational and lactational dioxin exposure. Ann N Y Acad Sci 1042:471–480

    Article  CAS  PubMed  Google Scholar 

  • Chipuk JE, Moldoveanu T, Llambi F (2010) The Bcl-2 family reunion. Mol Cell 37(3):299–310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collier R, Collier J, Rhoads RP, Baumgard L (2008) Genes involved in the bovine heat stress response. J Dairy Sci 91:445–454

    Article  CAS  PubMed  Google Scholar 

  • Crott J, Thomas P, Fenech M (2001) Normal human lymphocytes exhibit wide rang of methionine-dependency which is related to altered cell division but not micronucleus frequency. J Mutagenesis 16:317–322

    Article  CAS  Google Scholar 

  • Davila JC, Rodriguez RJ, Melchert RB, Acosta DA (1998) Predictive value of in vitro model systems in toxicology. Annu Rev Pharmacol 38:63–96

    Article  CAS  Google Scholar 

  • Du J, Di HS, Guo L (2006) The effect of high temperature on mammary epithelial cells proliferation and apoptosis. Acta Zool Sin 52(5):959–965

    CAS  Google Scholar 

  • Du J, Di HS, Wang GL (2007) Establishment of a bovine epithelial mammary cell line and its ultrastructural changes when exposed to heat stress. Chin J Biotechnol 23:471–476

    CAS  Google Scholar 

  • Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  CAS  PubMed  Google Scholar 

  • Gao CN, Suchida T (1999) Activation of caspases in p53 induced transactivation-independent apoptosis. Jpn J Cancer Res 90(2):180–187

    Article  CAS  PubMed  Google Scholar 

  • Girard CL, Lapierre H, Matte JJ, Lobley CE (2005) Effect of dietary supplements of folic acid and rumen protected methionine on lactational performance and folate metabolism of dairy cows. J Dairy Sci 88:660–670

    Article  CAS  PubMed  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ (1999) Bcl-2 family members and the mitochondria in apoptosis. Genes Dev 13(15):1899–1911

    Article  CAS  PubMed  Google Scholar 

  • Guo L (2007) Effects of unitary or successive heat treatment on mammary epithelial cells proliferation and apoptosis. Journal of Nanjing Agricultural University 30:100–104

    CAS  Google Scholar 

  • Halestrap AP, Mcstay GO, Clarke SJ (2002) The permeability transition pore complex: another view. Biochimie 84(2):153–166

    Article  CAS  PubMed  Google Scholar 

  • Han ZY (2009) The effects of rumen-protected methionine on production performance of dairy cows, lymphocyte apoptosis and related gene under heat stress. Chinese Journal of Animal Nutrition 21:665–672

    Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(12):770–776

    Article  CAS  PubMed  Google Scholar 

  • Hong YL (2010) Cytoprotection of vitamin E on hyperthermia-induced damage in bovine mammary epithelial cells. Journal of Thermal 35:250–253

    Article  Google Scholar 

  • Hu H (2011) Responses of cultured bovine mammary epithelial cells to heat stress. J Agric Biotechnol 19:287–293

    CAS  Google Scholar 

  • Jaattela M (1999) Heat shock proteins as cellular lifeguards. Ann Med 31:261–271

    Article  CAS  PubMed  Google Scholar 

  • Jin HM (2007) Pathology and physiology. National Med J China 76:945–946

    Google Scholar 

  • Kampinga HH (2006) Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int J Hyperthermia 22(3):191–196

    Article  CAS  PubMed  Google Scholar 

  • Koremer G, Zamzami N, Susin SA (1997) Mitochondria control of apoptosis. Immunol Today 18:44–51

    Article  Google Scholar 

  • Lepock JR (2005) How do cells respond to their thermal environment? Int J Hyperthermia 21(8):681–687

    Article  CAS  PubMed  Google Scholar 

  • Li XY (2010) The effect of lysine and methionine on proliferation of bovine mammary epithelial cells in vitro by MTT colorimetric assay. Biotechnol Bull 3:143–148

    Google Scholar 

  • Li P, Nijhawan D, Budiardjo I (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Cao ZJ, Wang L (2009) Responses of milk protein and mammary amino acids metabolism to duodenal soybean small peptides and free amino acids infusion in lactating goat. J Dairy Sci 92(E-suppl 1):47

    Google Scholar 

  • Lindquist S, Craig EA (1988) The heat shock protein. Ann Rev Genet 22:631–637

    Article  CAS  PubMed  Google Scholar 

  • Liu GS (2004) Temperature effects on milk yield and measure. Anim Sci and Vet Med 6:26–28

    Google Scholar 

  • Liu HY, Yang JY, Wu HH (2007) Effects of methionine and its ratio to lysine on expression of αs1-casein gene in cultured bovine mammary epithelial cells. J Anim Feed Sci 16:330–334

    Google Scholar 

  • Lobley CG, Connell A, Buchan V (1987) Administration of testosterone to wether lambs: effect on protein and energy metabolism and growth hormone status. J Endocrinol 115:439

    Article  CAS  PubMed  Google Scholar 

  • Mercier JC, Vilott JL (1993) Structure and function of milk protein genes. J Dairy Sci 76:3079–3098

    Article  CAS  PubMed  Google Scholar 

  • Morano KA, Thiele DJ (1999) Heat Shock Factor function and regulation in response to cellular stress, growth, and differentiation signals. Gene Exp 7:271–282

    CAS  Google Scholar 

  • Mu T, Kong GH, Han ZY, Li HX (2014) Cytoprotection of methionine on hyperthermia-induced damage in bovine mammary epithelial cells. Cell Biol Int 38:971–976

    Article  CAS  PubMed  Google Scholar 

  • Nan X, Campoy FJ, Bird A (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88:471–481

    Article  CAS  PubMed  Google Scholar 

  • Nichols JR, Schingoephe DJ, Maiga HA, Brouk MJ, Piepenbrink MS (1998) Evaluation of corn distillers grains and ruminally protected lysine and methionine for lactating dairy cows. J Dairy Sci 81:482–491

    Article  CAS  PubMed  Google Scholar 

  • Nutt LK, Pataer A, Pahler J (2002) Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem 277(11):9219–9225

    Article  CAS  PubMed  Google Scholar 

  • Patel MP, Masood A, Patel PS (2009) Targeting the Bcl-2. Curr Opin Oncol 21(6):516–523

    Article  PubMed  Google Scholar 

  • Punyiczki M, Fesus L (1998) The two defense systems of the organism may have overlapping molecular elements. Ann N Y Acad Sci 851:67–74

    Article  CAS  PubMed  Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179(4073):588–590

    Article  CAS  PubMed  Google Scholar 

  • Satoh K, Kaneko K, Hirota M (2000) The pattern of CPP32/caspase-3 expression reflects the biological behavior of the human pancreatic duct cell tumors. Pancreas 21(4):352–357

    Article  CAS  PubMed  Google Scholar 

  • Sehirli O, Tozan A, Omurtag GZ (2008) Protective effect of resveratrol against naphthalene-induced oxidative stress in mice. Ecotoxicol Environ Saf 71:301

    Article  CAS  PubMed  Google Scholar 

  • Shan L, Sara MH, Eugene MC, Danial EE (2002) Methionine restriction induces apoptosis of prostate cancer cells via the c-Jun N-terminal kinase mediated signaling pathway. Cancer Letter 179:51–58

    Article  Google Scholar 

  • Soder KJ, Holden LA (1999) Lymphocyte proliferation response of lactating dairy cows fed varying concentrations of rumen protection methionine. J Dairy Sci 82:1935–1942

    Article  CAS  PubMed  Google Scholar 

  • Sonn L, Fujita J, Gaffin SL (2002) Invited review: effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742

    Google Scholar 

  • Sun PM, Wang ZL, Li JM (2007) The new development of heat shock protein 70. Chin J Vet Sci 27(2):284–288

    CAS  Google Scholar 

  • Wang LX (2007) Regulation and detecting methods of cell apoptosis. J Anim Sci and Vet Med 26:40–42

    CAS  Google Scholar 

  • Wang JP (2008) Effects of heat stress on cows progress. Chin Dairy 7:21–24

    Google Scholar 

  • Wang JL (2012) Effect of methionine on lactation ability of dairy cow mammary epithelial cells cultured in vitro. J Dairy Sci and Technol 35:8–10

    Google Scholar 

  • Wang C, Liu JX (2008) Effects of ratio of lysine to methionine in metabolizable protein on lactation performance of dairy COWS. Proceeding of the 13th Animal Science Congress of the Asian-Australian of Animal Production Societies 65

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Bio 11:441–469

    Article  CAS  Google Scholar 

  • Wu HH, Zhao XJ, Zhang CQ (2004) Establishment of mammary tissue culture: an in vitro mode for bovine lactation. J Anim Feed Sci 13:575–578

    CAS  Google Scholar 

  • Yan XY, Li XH (2004) Study on the heat stress in dairy cows. Anim Sci & Vet Med 9(21):42–44

    Google Scholar 

  • Yan Z, Cynthia G, Andren LB (2000) Selective and protracted apoptosis in human primary neurons microinjection with active caspase-3, -6, -7 and -8. J Neurosci 20:8384–8389

    Google Scholar 

  • Yang JY (2007) Effects of methionine and methionylmethionine on expression of casein αs1 gene in cultured bovine mammary epithelial cells. J Agr Biotechnol 1:24–27

    Google Scholar 

  • Yonezawa M, Otsuka T, Kato T, Moriyama A, Kato KH, Asai K, Matsui N (2002) Hyperthermic induction of apoptosis in malignant fibrous histiocytoma cells: possible involvement of a p53-independent pathway in induction of Bax gene. Ortthop Sci 7(1):117–122

    Article  CAS  Google Scholar 

  • Zhang ZW, Lv ZH, Li JL, Li S, Xu SW, Wang XL (2011) Effects of cold stress on nitric oxide in duodenum of chicks. Poult Sci 90(7):1555–1561

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZF (2010) Cell growth, apoptosis and the mRNA transcription of heat shock protein: effects of heat stress on bovine mammary epithelial cells. Acta Veterinariaet Zootechnica Sinica 41:600–607

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Supporting Projects for Science and Techniques (NO. 2012BAD12B10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Yu Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, ZY., Mu, T. & Yang, Z. Methionine protects against hyperthermia-induced cell injury in cultured bovine mammary epithelial cells. Cell Stress and Chaperones 20, 109–120 (2015). https://doi.org/10.1007/s12192-014-0530-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-014-0530-7

Keywords

Navigation