Skip to main content
Log in

Tissue-specific upregulation of HSP72 in mice following short-term administration of alcohol

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Oxidative stress and cellular injury have been implicated in induction of HSP72 by alcohol. We investigated the association between HSP72 induction and oxidative stress in mouse tissues following short-term administration of high doses of alcohol and caffeine alone or in combination. Adult male C57BL/6J mice were gavaged with vehicle, alcohol (∼1.7 g/kg/day), caffeine (∼44 mg/kg/day), or alcohol plus caffeine once daily for ten consecutive days. Upon completion of the treatments, tissues were collected for structural and biochemical analyses. Alcohol alone caused mild to moderate lesions in heart, liver, and gastrocnemius muscle. Similar structural changes were observed following administration of alcohol and caffeine combined. Alcohol administration also led to decreased glutathione levels in all three tissues and reduced plasma superoxide dismutase capacity. In contrast, alcohol and caffeine in combination reduced glutathione levels only in liver and gastrocnemius muscle and had no effect on plasma superoxide dismutase. Significant elevations in HSP72 protein and mRNA and in HSF1 protein levels were noted only in liver by alcohol alone or in combination with caffeine. No significant changes in morphology and HSP72 were detected in any tissues tested following administration of caffeine alone. These results suggest that a redox mechanism is involved in the structural impairment caused by short-term high-dose alcohol. Oxidative tissue injury by alcohol may not be associated with tissue HSP72 induction. Induction of HSP72 in liver by alcohol is mediated at both the transcriptional and translational levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abou-Agag LH, Khoo NK, Binsack R et al (2005) Evidence of cardiovascular protection by moderate alcohol: role of nitric oxide. Free Radic Biol Med 39:540–548

    Article  PubMed  CAS  Google Scholar 

  • Aoyama K, Matsumura N, Watabe M et al (2011) Caffeine and uric acid mediate glutathione synthesis for neuroprotection. Neuroscience 181:206–215

    Article  PubMed  CAS  Google Scholar 

  • Arteel GE (2003) Oxidants and antioxidants in alcohol-induced liver disease. Gastroenterology 124:778–790

    Article  PubMed  CAS  Google Scholar 

  • Attwood AS (2012) Caffeinated alcohol beverages: a public health concern. Alcohol Alcohol 47:370–371

    Article  PubMed  Google Scholar 

  • Azam S, Hadi N, Khan NU, Hadi SM (2003) Antioxidant and prooxidant properties of caffeine, theobromine and xanthine. Med Sci Monit 9:BR325–BR330

    PubMed  CAS  Google Scholar 

  • Bae SH, Sung SH, Cho EJ et al (2011) Concerted action of sulfiredoxin and peroxiredoxin I protects against alcohol-induced oxidative injury in mouse liver. Hepatology 53:945–953

    Article  PubMed  CAS  Google Scholar 

  • Baillie M (1971) Alcohol and the liver. Gut 12:222–229

    Article  PubMed  CAS  Google Scholar 

  • Bondy SC (1992) Ethanol toxicity and oxidative stress. Toxicol Lett 63:231–241

    Article  PubMed  CAS  Google Scholar 

  • Bray TM, Taylor CG (1993) Tissue glutathione, nutrition, and oxidative stress. Can J Physiol Pharmacol 71:746–751

    Article  PubMed  CAS  Google Scholar 

  • Calabrese V, Renis M, Calderone A et al (1998) Stress proteins and SH-groups in oxidant-induced cellular injury after chronic ethanol administration in rat. Free Radic Biol Med 24:1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Calabrese V, Testa G, Ravagna A et al (2000) HSP70 induction in the brain following ethanol administration in the rat: regulation by glutathione redox state. Biochem Biophys Res Commun 269:397–400

    Article  PubMed  CAS  Google Scholar 

  • Callahan MK, Chaillot D, Jacquin C et al (2002) Differential acquisition of antigenic peptides by Hsp70 and Hsc70 under oxidative conditions. J Biol Chem 277:33604–33609

    Article  PubMed  CAS  Google Scholar 

  • Cederbaum AI (2001) Introduction-serial review: alcohol, oxidative stress and cell injury. Free Radic Biol Med 31:1524–1526

    Article  PubMed  CAS  Google Scholar 

  • Cederbaum AI, Lu Y, Wu D (2009) Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol 83:519–548

    Article  PubMed  CAS  Google Scholar 

  • Dam AD, Mitchell AS, Rush JW, Quadrilatero J (2012) Elevated skeletal muscle apoptotic signaling following glutathione depletion. Apoptosis 17:48–60

    Article  PubMed  CAS  Google Scholar 

  • Das SK, Vasudevan DM (2007) Alcohol-induced oxidative stress. Life Sci 81:177–187

    Article  PubMed  CAS  Google Scholar 

  • Diehl AM, Thorgeirsson SS, Steer CJ (1990) Ethanol inhibits liver regeneration in rats without reducing transcripts of key protooncogenes. Gastroenterology 99:1105–1112

    PubMed  CAS  Google Scholar 

  • Duguay L, Coutu D, Hetu C, Joly JG (1982) Inhibition of liver regeneration by chronic alcohol administration. Gut 23:8–13

    Article  PubMed  CAS  Google Scholar 

  • Farag MM, Abdel-Meguid EM (1994) Hepatic glutathione and lipid peroxidation in rats treated with theophylline. Effect of dose and combination with caffeine and acetaminophen. Biochem Pharmacol 47:443–446

    Article  PubMed  CAS  Google Scholar 

  • Fortes MB, Whitham M (2011) Salivary Hsp72 does not track exercise stress and caffeine-stimulated plasma Hsp72 responses in humans. Cell Stress Chaperones 16:345–352

    Article  PubMed  CAS  Google Scholar 

  • Fromenty B, Pessayre D (1995) Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. Pharmacol Ther 67:101–154

    Article  PubMed  CAS  Google Scholar 

  • Fudin R, Nicastro R (1988) Can caffeine antagonize alcohol-induced performance decrements in humans? Percept Mot Skills 67:375–391

    Article  PubMed  CAS  Google Scholar 

  • Gemma S, Vichi S, Testai E (2006) Individual susceptibility and alcohol effects:biochemical and genetic aspects. Ann Ist Super Sanita 42:8–16

    PubMed  CAS  Google Scholar 

  • Gonenc S, Uysal N, Acikgoz O et al (2005) Effects of melatonin on oxidative stress and spatial memory impairment induced by acute ethanol treatment in rats. Physiol Res 54:341–348

    PubMed  CAS  Google Scholar 

  • Hapner CD, Deuster P, Chen Y (2010) Inhibition of oxidative hemolysis by quercetin, but not other antioxidants. Chem Biol Interact 186:275–279

    Article  PubMed  CAS  Google Scholar 

  • Iacovoni A, De Maria R, Gavazzi A (2010) Alcoholic cardiomyopathy. J Cardiovasc Med (Hagerstown) 11:884–892

    Article  Google Scholar 

  • Kessova IG, Cederbaum AI (2007) Mitochondrial alterations in livers of Sod1−/− mice fed alcohol. Free Radic Biol Med 42:1470–1480

    Article  PubMed  CAS  Google Scholar 

  • Ki SH, Park O, Zheng M et al (2010) Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: role of signal transducer and activator of transcription 3. Hepatology 52:1291–1300

    Article  PubMed  CAS  Google Scholar 

  • Krenz M, Baines CP, Heusch G et al (2001) Acute alcohol-induced protection against infarction in rabbit hearts: differences from and similarities to ischemic preconditioning. J Mol Cell Cardiol 33:2015–2022

    Article  PubMed  CAS  Google Scholar 

  • Lang CH, Kimball SR, Frost RA, Vary TC (2001) Alcohol myopathy: impairment of protein synthesis and translation initiation. Int J Biochem Cell Biol 33:457–473

    Article  PubMed  CAS  Google Scholar 

  • Li J, Li G, Hu JL et al (2011) Chronic or high dose acute caffeine treatment protects mice against oleic acid-induced acute lung injury via an adenosine A2A receptor-independent mechanism. Eur J Pharmacol 654:295–303

    Article  PubMed  CAS  Google Scholar 

  • Lieber CS (1988) Biochemical and molecular basis of alcohol-induced injury to liver and other tissues. N Engl J Med 319:1639–1650

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Lightfoot R, Stevens JL (1996) Activation of heat shock factor by alkylating agents is triggered by glutathione depletion and oxidation of protein thiols. J Biol Chem 271:4805–4812

    Article  PubMed  CAS  Google Scholar 

  • Marczinski CA, Fillmore MT (2006) Clubgoers and their trendy cocktails: implications of mixing caffeine into alcohol on information processing and subjective reports of intoxication. Exp Clin Psychopharmacol 14:450–458

    Article  PubMed  CAS  Google Scholar 

  • McDuffee AT, Senisterra G, Huntley S et al (1997) Proteins containing non-native disulfide bonds generated by oxidative stress can act as signals for the induction of the heat shock response. J Cell Physiol 171:143–151

    Article  PubMed  CAS  Google Scholar 

  • Mokdad AH, Marks JS, Stroup DF, Gerberding JL (2004) Actual causes of death in the United States, 2000. JAMA 291:1238–1245

    Article  PubMed  Google Scholar 

  • Mytilineou C, Kramer BC, Yabut JA (2002) Glutathione depletion and oxidative stress. Parkinsonism Relat Disord 8:385–387

    Article  PubMed  Google Scholar 

  • Nakahara T, Hunter R, Hirano M et al (2006) Alcohol alters skeletal muscle heat shock protein gene expression in rats: these effects are moderated by sex, raised endogenous acetaldehyde, and starvation. Metabolism 55:843–851

    Article  PubMed  CAS  Google Scholar 

  • Ohta A, Lukashev D, Jackson EK et al (2007) 1,3,7-trimethylxanthine (caffeine) may exacerbate acute inflammatory liver injury by weakening the physiological immunosuppressive mechanism. J Immunol 179:7431–7438

    PubMed  CAS  Google Scholar 

  • Otis JS, Guidot DM (2010) Procysteine increases alcohol-depleted glutathione stores in rat plantaris following a period of abstinence. Alcohol Alcohol 45:495–500

    Article  PubMed  CAS  Google Scholar 

  • Porras N, Strauss M, Rodriguez M, Anselmi G (2006) Hsp70 accumulation and ultrastructural features of lung and liver induced by ethanol treatment with and without L-carnitine protection in rats. Exp Toxicol Pathol 57:227–237

    Article  PubMed  CAS  Google Scholar 

  • Preedy VR, Patel VB, Why HJ et al (1996) Alcohol and the heart: biochemical alterations. Cardiovasc Res 31:139–147

    PubMed  CAS  Google Scholar 

  • Preedy VR, Reilly ME, Patel VB et al (1999) Protein metabolism in alcoholism: effects on specific tissues and the whole body. Nutrition 15:604–608

    Article  PubMed  CAS  Google Scholar 

  • Preedy VR, Ohlendieck K, Adachi J et al (2003) The importance of alcohol-induced muscle disease. J Muscle Res Cell Motil 24:55–63

    Article  PubMed  CAS  Google Scholar 

  • Preedy VR, Crabb DW, Farres J, Emery PW (2007) Alcoholic myopathy and acetaldehyde. Novartis Found Symp 285:158–177, discussion 177–182, 198–159

    Article  PubMed  CAS  Google Scholar 

  • Qin L, Crews FT (2012) NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration. J Neuroinflammation 9:5

    Article  PubMed  CAS  Google Scholar 

  • Reinke LA, Lai EK, DuBose CM, McCay PB (1987) Reactive free radical generation in vivo in heart and liver of ethanol-fed rats: correlation with radical formation in vitro. Proc Natl Acad Sci U S A 84:9223–9227

    Article  PubMed  CAS  Google Scholar 

  • Saika M, Ueyama T, Senba E (2000) Expression of immediate early genes, HSP70, and COX-2 mRNAs in rat stomach following ethanol ingestion. Dig Dis Sci 45:2455–2462

    Article  PubMed  CAS  Google Scholar 

  • Salem RO, Laposata M, Rajendram R et al (2006) The total body mass of fatty acid ethyl esters in skeletal muscles following ethanol exposure greatly exceeds that found in the liver and the heart. Alcohol Alcohol 41:598–603

    Article  PubMed  CAS  Google Scholar 

  • Scolaro B, Delwing-de Lima D, da Cruz JG, Delwing-Dal Magro D (2012) Mate tea prevents oxidative stress in the blood and hippocampus of rats with acute or chronic ethanol administration. Oxid Med Cell Longev 2012:314758

    Article  PubMed  Google Scholar 

  • Tsukimi Y, Okabe S (2001) Recent advances in gastrointestinal pathophysiology: role of heat shock proteins in mucosal defense and ulcer healing. Biol Pharm Bull 24:1–9

    Article  PubMed  CAS  Google Scholar 

  • Varma SD, Hegde KR, Kovtun S (2010) Oxidative stress in lens in vivo: inhibitory effect of caffeine. A preliminary report. Mol Vis 16:501–505

    PubMed  CAS  Google Scholar 

  • Waly MI, Kharbanda KK, Deth RC (2011) Ethanol lowers glutathione in rat liver and brain and inhibits methionine synthase in a cobalamin-dependent manner. Alcohol Clin Exp Res 35:277–283

    Article  PubMed  CAS  Google Scholar 

  • Wands JR, Carter EA, Bucher NL, Isselbacher KJ (1979) Inhibition of hepatic regeneration in rats by acute and chronic ethanol intoxication. Gastroenterology 77:528–531

    PubMed  CAS  Google Scholar 

  • Wands JR, Carter EA, Bucher NL, Isselbacher KJ (1980) Effect of acute and chronic ethanol intoxication on hepatic regeneration. Adv Exp Med Biol 132:663–670

    PubMed  CAS  Google Scholar 

  • Weldy DL (2010) Risks of alcoholic energy drinks for youth. J Am Board Fam Med 23:555–558

    Article  PubMed  Google Scholar 

  • Whitham M, Walker GJ, Bishop NC (2006) Effect of caffeine supplementation on the extracellular heat shock protein 72 response to exercise. J Appl Physiol 101:1222–1227

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Cederbaum AI (2003) Alcohol, oxidative stress, and free radical damage. Alcohol Res Health 27:277–284

    PubMed  Google Scholar 

  • Yamada T, Hashida K, Takarada-Iemata M et al (2011) Alpha-lipoic acid (LA) enantiomers protect SH-SY5Y cells against glutathione depletion. Neurochem Int 59:1003–1009

    Article  PubMed  CAS  Google Scholar 

  • Zhou HZ, Karliner JS, Gray MO (2002) Moderate alcohol consumption induces sustained cardiac protection by activating PKC-epsilon and Akt. Am J Physiol Heart Circ Physiol 283:H165–H174

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We consulted Dr. Cara Olsen, Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences (USUHS), for statistical analysis. This work was supported by USUHS Grant R091EH and the Office of Naval Research Grant N0001411MP20025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, A., Abraham, P., Hapner, C.D. et al. Tissue-specific upregulation of HSP72 in mice following short-term administration of alcohol. Cell Stress and Chaperones 18, 215–222 (2013). https://doi.org/10.1007/s12192-012-0375-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-012-0375-x

Keywords

Navigation