Skip to main content

Advertisement

Log in

Analysis of time delay in viral infection model with immune impairment

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, a class of virus infection models with CTLs response is considered. We incorporate three delays with immune impairment into the virus infection model. We begin model analysis with proving the positivity and boundedness of the solutions, local stability of the infection-free and infected steady states, and uniform persistence of the system. By analyzing corresponding characteristic equation, the local stability of each feasible equilibria and the existence of Hopf bifurcation at the infected equilibrium are addressed, respectively. By fixing the immune delay as a bifurcation parameter, we get a limit cycle bifurcation about the infected steady state. Using center manifold argument and normal form theory, we derive explicit formulae to determine the stability and direction of the limit cycles of the model. By developing a few Lyapunov functionals, we obtain conditions ensuring global stability of steady states at \(\tau _3<\tau _3^*\). By theoretical analysis and numerical simulations, we show that the immune impairment rate has a dramatic effect on the infected equilibrium of the DDE model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M., Markowitz, M.: Rapid turnover of plasma virions and \(\mathit{CD}4\) lymphocytes in HIV-1 infection. Nature 373, 123–6 (1995)

    Article  Google Scholar 

  2. Nelson, P.W., Perelson, A.S.: Mathematical analysis of delay differential equation models of HIV-1 infection. Math. Biosci. 179, 73–94 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Nelson, P.W., Murray, J., Perelson, A.S.: A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. 163, 201–15 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Perelson, A.S., Kirschner, D.E., De Boer, R.: Dynamics of HIV infection of \(\mathit{CD}4^+T\) cells. Math. Biosci. 114, 81–125 (1993)

    Article  MATH  Google Scholar 

  5. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D.: HIV-1 dynamics in vivo: virion clearence rate, infected cell life-span and viral generation time. Science 271, 1582–1586 (1996)

    Article  Google Scholar 

  6. Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM. Rev. 41, 3–44 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pitchaimani, M., Monica, C.: Global stability analysis of HIV-1 infection model with three time delays. J. Appl. Math. Comput. 48, 293–319 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Monica, C., Pitchaimani, M.: Analysis of stability and Hopf bifurcation for HIV-1 dynamics with PI and three intracellular delays. Nonlinear Anal. Real World. Appl. 27, 55–69 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nowak, M.A., Bangham, C.R.M.: Population dynamics of immune responses to persistent viruses. Science 272, 74–79 (1996)

    Article  Google Scholar 

  10. Wang, K., Wang, W., Pang, H., Liu, X.: Complex dynamic behavior in a viral model with delayed immune response. Phys. D 226, 197–208 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Song, X., Wang, S., Zhou, X.: Stability and Hopf bifurcation for a viral infection modelwith delayed non-lytic immuneresponse. J. Appl. Math. Comput. 33, 251–265 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xie, Q., Huang, D., Zhang, S., Cao, J.: Analysis of a viral infection model with delayed immune response. Appl. Math. Model. 34, 2388–2395 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Song, X., Wang, S., Dong, J.: Stability properties and Hopf bifurcation of a delayed viral infection model with lytic immune response. J. Math. Anal. Appl. 373, 345–355 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhou, X., Song, X., Shi, X.: Analysis of stability and Hopf bifurcation for an HIV infection model with time delay. Appl. Math. Comput. 199(1), 23–38 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Buric, N., Mudrinic, M., Vasovic, N.: Time delay in a basic model of the immune response. Chaos Solitons Fract. 12, 483–489 (2001)

    Article  MATH  Google Scholar 

  16. Canabarro, A.A., Glria, I.M., Lyra, M.L.: Periodic solutions and chaos in a non-linear model for the delayed cellular immune response. Phys. A 342, 234–241 (2004)

    Article  Google Scholar 

  17. Wang, S., Song, X., Ge, Z.: Dynamics analysis of a delayed viral infection model with immune impairment. Appl. Math. Model. 35, 4877–4885 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. MacDonald, N.: Biological Delay Systems: Linear Stability Theory. Cambridge University, Cambridge (1989)

    MATH  Google Scholar 

  19. Hale, J.: Theory of Functional Differential Equations. Springer, New York (1997)

    Google Scholar 

  20. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, Boston (1993)

    MATH  Google Scholar 

  21. Ruan, S., Wei, J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. Cont. Discrete Impuls. Syst. Ser. A Math. Anal. 10, 863–874 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Cooke, K.L., Grossman, Z.: Discrete delay, distributed delay and stability switches. J. Math. Anal. Appl. 86, 592–627 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hale, J., Lunel, S.V.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  24. Hassard, B.D., Kazariniff, N.D., Wan, Y.H.: Theory and application of Hopf bifurcation. In: London Mathematical Society Lecture Note Series, vol. 41. Cambridge University Press, Cambridge, MA (1981)

  25. Gantmacher, F.G.: The Theory of Matrices. Chelsea Publ. Co., New York (1959)

    MATH  Google Scholar 

  26. White, M., Zhao, X.: Threshold dynamics in a time-delayed epidemic model with dispersal. Math. Biosci. 218, 121 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Iwami, S., Miura, T., Nakaoka, S., Takeuchi, Y.: Immune impairment in HIV infection: existence of risky and immunodeficiency thresholds. J. Theor. Biol. 260, 490–501 (2009)

    Article  MathSciNet  Google Scholar 

  28. Iwami, S., Nakaoka, S., Takeuchi, Y., Miura, T.: Immune impairment thresholds in HIV infection. Immunol. Lett. 123, 149–154 (2009)

    Article  Google Scholar 

  29. Wang, Z., Liu, X.: A chronic viral infection model with immune impairment. J. Theor. Biol. 249, 532–542 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Krishnapriya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnapriya, P., Pitchaimani, M. Analysis of time delay in viral infection model with immune impairment. J. Appl. Math. Comput. 55, 421–453 (2017). https://doi.org/10.1007/s12190-016-1044-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-016-1044-5

Keywords

Mathematics Subject Classification

Navigation