Skip to main content
Log in

Abstract

For positives integers \(\alpha _{1}, \alpha _{2}, \ldots , \alpha _{r}\) with \(\alpha _{r} \ge 2\), the multiple zeta value or \(r\)-fold Euler sum \(\zeta (\alpha _{1}, \alpha _{2}, \ldots , \alpha _{r})\) is defined by the multiple series

$$\begin{aligned} \sum _{1 \le n_{1} < n_{2} < \cdots < n_{r}} n_{1}^{-\alpha _{1}} n_{2}^{-\alpha _{2}} \ldots n_{r}^{-\alpha _{r}}. \end{aligned}$$

In this paper, for integers \(k,r\ge 0\) and complex numbers \(\mu ,\lambda ,\) we consider the double weighted sum defined by

$$\begin{aligned} E_{k,r}(\mu ,\lambda )=\sum _{p+q=k}\mu ^{p}\sum _{\left| \alpha \right| =q+r+3}\zeta ({\left\{ 1 \right\} ^{p},\alpha _{0},\ldots ,\alpha _{q},\alpha _{q+1}+1})\lambda ^{\alpha _{q+1}} \end{aligned}$$

and then evaluate \(E_{k,r}(2,2),\) \(E_{k,r}(2,1),\) \(E_{k,r}(1,2),\) \(E_{k,r}(1,1)\) and \(E_{k,r}(0,1)\) in terms of the special values at positive integers of the Riemann zeta function. Note that

$$\begin{aligned} E_{k,r}(0,1)=\sum _{\left| \alpha \right| =k+r+3}\zeta (\alpha _{0},\ldots ,\alpha _{k},\alpha _{k+1}+1) \end{aligned}$$

so our results cover the sum formula

$$\begin{aligned} \sum _{\left| \alpha \right| =k+r+3}\zeta (\alpha _{0},\ldots ,\alpha _{k},\alpha _{k+1}+1)=\zeta (k+r+4) \end{aligned}$$

proved by Granville in 1996.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berndt, B.C.: Ramanujan’s Notebooks. Springer, New York (1985). (Part I and II)

    Book  MATH  Google Scholar 

  2. Browein, D., Bradley, D.M.: Multiple polylogarithms: a brief survey. Contemp. Math. 291, 71–92 (2001)

    Article  Google Scholar 

  3. Borwein, J.M., Bradly, D.M.: Thirty-Two Goldbach variations. Int. J. Number Theory 2(1), 65–103 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borwein, D., Borwein, J.M., Girgensohn, R.: Explicit evaluation of Euler sums. Proc. Edinb. Math. Soc. (2) 38(2), 277–294 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Borwein, J.M., Bradley, D.M., Broadhurst, D.J., Lisoněk, P.: Special values of multiple polylogarithms. Trans. Am. Math. Soc. 353(3), 907–941 (2001)

    Article  MATH  Google Scholar 

  6. Buhler, J.P., Crandall, R.E.: On the evaluation of Euler sums. Exp. Math. 3(4), 275–285 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eie, M.: Topics in Number Theory. Monographs in Number Theory 2. World Scientific, Singapore (2009)

  8. Eie, M., Wei, C.-S.: A short proof for the sum formula and its generalization. Arch. Math. 91(4), 330–338 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Flajolet, P., Salvy, B.: Euler sums and contour integral representations. Exp. Math. 7(1), 15–35 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Guo, L., Xie, B.: Weighted sum formula for multiple zeta values. J. Number Theory 129, 2747–2765 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ohno, Y.: A generalization of the duality and sum formulas on multiple zeta values. J. Number Theory 74(1), 39–43 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ohno, Y., Zudilin, W.: Zeta stars. Commun. Number Theory Phys. 2, 327–349 (2008)

    Article  MathSciNet  Google Scholar 

  13. Ong, Y.L., Eie, M., Liaw, W.-C.: On generalizations of weighted sum formulas of multiple zeta values. Int. J. Number Theory 9(5), 1185–1198 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Sheng Wei.

Additional information

Communicated by Ulf Kühn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eie, M., Liaw, WC. & Wei, CS. Double weighted sum formulas of multiple zeta values. Abh. Math. Semin. Univ. Hambg. 85, 23–41 (2015). https://doi.org/10.1007/s12188-015-0105-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-015-0105-2

Keywords

Mathematics Subject Classification

Navigation