Skip to main content
Log in

Ruxolitinib dose management as a key to long-term treatment success

  • Review Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The Janus kinase 1 (JAK1) and JAK2 inhibitor ruxolitinib is currently the only therapy indicated for intermediate- or high-risk myelofibrosis. Results from clinical trials and experience in clinical practice have shown that ruxolitinib reduces myelofibrosis-related splenomegaly and symptom burden, and improves quality-of-life measures. In addition, ruxolitinib was associated with a survival advantage compared with placebo or conventional therapy in controlled trials. However, owing to the myelosuppressive effects of JAK2 inhibition, ruxolitinib is associated with decreases in hemoglobin and platelet counts, particularly during the first 8–12 weeks of therapy. Close monitoring of blood counts and careful dose management, particularly early in the course of therapy, are essential to avoid unnecessary cytopenias that may prompt premature treatment discontinuation by patients who otherwise would benefit from continued therapy. In general, starting doses and dose reductions should be used as recommended by the prescribing information based on platelet counts. A dose-escalation approach at the start of therapy is only recommended for patients with platelet counts of 50–100 × 109/L. If possible, maximum tolerated doses should be maintained and extended treatment interruptions should be avoided to prevent lack or loss of treatment responses. An individualized dosing approach is key to long-term treatment success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gregory SA, Mesa RA, Hoffman R, Shammo JM. Clinical and laboratory features of myelofibrosis and limitations of current therapies. Clin Adv Hematol Oncol. 2011;9(Suppl 22):1–16.

    PubMed  Google Scholar 

  2. Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113:2895–901.

    Article  CAS  PubMed  Google Scholar 

  3. Tefferi A, Lasho TL, Jimma T, Finke CM, Gangat N, Vaidya R, et al. One thousand patients with primary myelofibrosis: the Mayo Clinic experience. Mayo Clin Proc. 2012;87:25–33.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mehta J, Wang H, Iqbal SU, Mesa R. Epidemiology of myeloproliferative neoplasms in the United States. Leuk Lymphoma. 2014;55:595–600.

    Article  PubMed  Google Scholar 

  5. Emanuel RM, Dueck AC, Geyer HL, Kiladjian JJ, Slot S, Zweegman S, et al. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol. 2012;30:4098–103.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mesa RA, Green A, Barosi G, Verstovsek S, Vardiman J, Gale RP. MPN-associated myelofibrosis (MPN-MF). Leuk Res. 2011;35:12–3.

    Article  CAS  PubMed  Google Scholar 

  7. Saeidi K. Myeloproliferative neoplasms: current molecular biology and genetics. Crit Rev Oncol Hematol. 2016;98:375–89.

    Article  PubMed  Google Scholar 

  8. Bose P, Verstovsek S. The evolution and clinical relevance of prognostic classification systems in myelofibrosis. Cancer. 2016;122:681–92.

    Article  PubMed  Google Scholar 

  9. Tefferi A, Guglielmelli P, Larson DR, Finke C, Wassie EA, Pieri L, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood. 2014;124:2507–13 (quiz 615).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cross NC. Genetic and epigenetic complexity in myeloproliferative neoplasms. Hematol Am Soc Hematol Educ Progr. 2011;2011:208–14.

    Google Scholar 

  11. Rampal R, Al-Shahrour F, Abdel-Wahab O, Patel JP, Brunel JP, Mermel CH, et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood. 2014;123:e123–33.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chachoua I, Pecquet C, El-Khoury M, Nivarthi H, Albu RI, Marty C, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127:1325–35.

    Article  CAS  PubMed  Google Scholar 

  13. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90.

    Article  CAS  PubMed  Google Scholar 

  14. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123:2220–8.

    Article  CAS  PubMed  Google Scholar 

  16. Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, On behalf of the Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014;123:1544–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rumi E, Pietra D, Pascutto C, Guglielmelli P, Martinez-Trillos A, Casetti I, On behalf of the Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators, et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood. 2014;124:1062–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med. 2010;363:1117–27.

    Article  CAS  PubMed  Google Scholar 

  19. Desterke C, Martinaud C, Ruzehaji N, Le Bousse-Kerdilès MC. Inflammation as a keystone of bone marrow stroma alterations in primary myelofibrosis. Mediators Inflamm. 2015;2015:415024.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–98.

    Article  CAS  PubMed  Google Scholar 

  22. Pardanani A, Harrison C, Cortes JE, Cervantes F, Mesa RA, Milligan D, et al. Safety and efficacy of fedratinib in patients with primary or secondary myelofibrosis: a randomized clinical trial. JAMA Oncol. 2015;1:643–51.

    Article  PubMed  Google Scholar 

  23. Wilkins BS, Radia D, Woodley C, Farhi SE, Keohane C, Harrison CN. Resolution of bone marrow fibrosis in a patient receiving JAK1/JAK2 inhibitor treatment with ruxolitinib. Haematologica. 2013;98:1872–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Molica M, Serrao A, Saracino R, Zacheo I, Stingone C, Alimena G, et al. Disappearance of fibrosis in secondary myelofibrosis after ruxolitinib treatment: new endpoint to achieve? Ann Hematol. 2014;93:1951–2.

    Article  PubMed  Google Scholar 

  25. Al-Ali HK, Hubert K, Lange T, Siebolts U, Wichenhauser C, Prashanth G, et al. Complete clinical, histopathologic and molecular remission of primary myelofibrosis with long-term treatment with the JAK1/2 inhibitor ruxolitinib. Blood. 2014;124:1836 (abstract).

    Google Scholar 

  26. Deininger M, Radich J, Burn TC, Huber R, Paranagama D, Verstovsek S. The effect of long-term ruxolitinib treatment on JAK2p.V617F allele burden in patients with myelofibrosis. Blood. 2015;126:1551–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kvasnicka HM, Thiele J, Bueso-Ramos CE, Sun W, Cortes JE, Kantarjian HM, et al. Effects of five-years of ruxolitinib therapy on bone marrow morphology in patients with myelofibrosis and comparison with best available therapy. Blood. 2013;122:4055 (abstract).

    Google Scholar 

  28. Harrison CN, Mesa RA, Kiladjian JJ, Al-Ali HK, Gisslinger H, Knoops L, et al. Health-related quality of life and symptoms in patients with myelofibrosis treated with ruxolitinib versus best available therapy. Br J Haematol. 2013;162:229–39.

    Article  CAS  PubMed  Google Scholar 

  29. Mesa RA, Gotlib J, Gupta V, Catalano JV, Deininger MW, Shields AL, et al. Effect of ruxolitinib therapy on myelofibrosis-related symptoms and other patient-reported outcomes in COMFORT-I: a randomized, double-blind, placebo-controlled trial. J Clin Oncol. 2013;31:1285–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mesa RA, Verstovsek S, Gupta V, Mascarenhas JO, Atallah E, Burn T, et al. Effects of ruxolitinib treatment on metabolic and nutritional parameters in patients with myelofibrosis from COMFORT-I. Clin Lymphoma Myeloma Leuk. 2015;15(214–21):e1.

    Google Scholar 

  31. Jakafi® ruxolitinib [prescribing information]. Wilmington: Incyte Corporation; 2014. http://www.jakafi.com/pdf/prescribing-information.pdf. Accessed 23 May 2016.

  32. JAKAVI (ruxolitinib). Indications for healthcare professionals. Novartis Oncology website. 2015. http://www.jakavi.com/index.jsp?lightbox=global-hcp. Accessed 23 May 2016.

  33. Talpaz M, Paquette R, Afrin L, Hamburg SI, Prchal JT, Jamieson K, et al. Interim analysis of safety and efficacy of ruxolitinib in patients with myelofibrosis and low platelet counts. J Hematol Oncol. 2013;6:81.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. Efficacy, safety and survival with ruxolitinib in patients with myelofibrosis: results of a median 2-year follow-up of COMFORT-I. Haematologica. 2013;98:1865–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cervantes F, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Sirulnik A, Stalbovskaya V, On behalf of the COMFORT-II investigators, et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood. 2013;122:4047–53.

    Article  CAS  PubMed  Google Scholar 

  36. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: results of a median 3-year follow-up of COMFORT-I. Haematologica. 2015;100:479–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Harrison CN, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Gisslinger H, Knoops L, et al. Long-term efficacy and safety in COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for the treatment of myelofibrosis: 5-year final study results. Blood. 2015;126:59 (abstract).

    Google Scholar 

  38. Tavares R, Palumbo GA, Le Coutre P, Palanciri F, Al-Ali HK, Martino B, et al. Safety and efficacy of ruxolitinib in an 1869-patient cohort of JUMP: an open-label, multicenter, single-arm, expanded-access study in patients with myelofibrosis. Blood. 2015;126:2799 (abstract).

    Google Scholar 

  39. Mesa RA, Shields A, Hare T, Erickson-Viitanen S, Sun W, Sarlis NJ, et al. Progressive burden of myelofibrosis in untreated patients: assessment of patient-reported outcomes in patients randomized to placebo in the COMFORT-I study. Leuk Res. 2013;37:911–6.

    Article  PubMed  Google Scholar 

  40. Mead AJ, Milojkovic D, Knapper S, Garg M, Chacko J, Farquharson M, et al. Response to ruxolitinib in patients with intermediate-1-, intermediate-2-, and high-risk myelofibrosis: results of the UK ROBUST Trial. Br J Haematol. 2015;170:29–39.

    Article  CAS  PubMed  Google Scholar 

  41. Kirito K, Komatsu N, Shimoda K, Okada H, Amagasaki T, Yonezu T, et al. Assessing the safety and efficacy of ruxolitinib in a multicenter, open-label, expanded-access study in Japanese patients with myelofibrosis (MF). Blood. 2015;126:1625 (abstract).

    Google Scholar 

  42. Tefferi A, Cervantes F, Mesa R, Passamonti F, Verstovsek S, Vannucchi AM, et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood. 2013;122:1395–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Passamonti F, Maffioli M, Cervantes F, Vannucchi AM, Morra E, Barbui T, et al. Impact of ruxolitinib on the natural history of primary myelofibrosis: a comparison of the DIPSS and the COMFORT-2 cohorts. Blood. 2014;123:1833–5.

    Article  CAS  PubMed  Google Scholar 

  44. Vannucchi AM, Kantarjian HM, Kiladjian JJ, Gotlib J, Cervantes F, Mesa RA, et al. A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis. Haematologica. 2015;100:1139–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Al-Ali HK, Stalbovskaya V, Gopalakrishna P, Perez-Ronco J, Foltz L. Impact of ruxolitinib treatment on the hemoglobin dynamics and the negative prognosis of anemia in patients with myelofibrosis. Leuk Lymphoma. 2016;57:2464–7

    Article  PubMed  Google Scholar 

  46. Gupta V, Harrison CN, Hexner EO, Al-Ali HK, Foltz L, Montgomery M, et al. The impact of anemia on overall survival in patients with myelofibrosis treated with ruxolitinib: an exploratory analysis of the COMFORT studies. Blood. 2015;126:1604 (abstract).

    Google Scholar 

  47. Verstovsek S, Gotlib J, Gupta V, Atallah E, Mascarenhas J, Quintas-Cardama A, et al. Management of cytopenias in patients with myelofibrosis treated with ruxolitinib and effect of dose modifications on efficacy outcomes. Onco Targets Ther. 2013;7:13–21.

    Article  PubMed  PubMed Central  Google Scholar 

  48. McMullin MF, Harrison CN, Niederwieser D, Demuynck H, Jakel N, Gopalakrishna P, et al. The use of erythropoiesis-stimulating agents with ruxolitinib in patients with myelofibrosis in COMFORT-II: an open-label, phase 3 study assessing efficacy and safety of ruxolitinib versus best available therapy in the treatment of myelofibrosis. Exp Hematol Oncol. 2015;4:26.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mesa RA, Komrokji RS, Sun W, Sandor VA, Verstovsek S. Optimizing dose titration of ruxolitinib: the COMFORT-I experience. Blood. 2013;122:4062 (abstract).

    Article  Google Scholar 

  50. Ellis MH, Lavi N, Mishchenko E, Dally N, Lavie D, Courevitch A, et al. Ruxolitinib treatment for myelofibrosis: efficacy and tolerability in routine practice. Leuk Res. 2015;39:1154–8

    Article  CAS  Google Scholar 

  51. Geyer H, Cannon K, Knight E, Fauble V, Camoriano J, Emanuel R, et al. Ruxolitinib in clinical practice for therapy of myelofibrosis: single USA center experience following Food and Drug Administration approval. Leuk Lymphoma. 2014;55:195–7.

    Article  PubMed  Google Scholar 

  52. Naqvi K, Pierce S, Zhou LS, Garcia-Manero G, Cortes JE, Kantarjian HM, et al. Role of ruxolitinib in patients (pts) with myeloproliferative neoplasms (MPNs) treated off clinical trial. J Clin Oncol. 2015;33(suppl):e18076 (abstract).

    Google Scholar 

  53. Sotiropoulos D, Papaioannou G, Iskas M, Karavalakis G, Bousiou Z, Athanasiadou A, et al. Treatment with ruxolitinib in patients with primary or secondary myelofibrosis: single center experience [abstract PB1932]. In: Presented at 20th congress of the European Haematology Association, 11–14 June 2015; Vienna, Austria. http://learningcenter.ehaweb.org/eha/2015/20th/102977/damianos.sotiropoulos.treatment.with.ruxolitinib.in.patients.with.primary.or.html?f=m3. Accessed 23 May 2016.

Download references

Acknowledgments

Medical writing support was provided by Roland Tacke, PhD, of Evidence Scientific Solutions, Philadelphia, PA, USA, and funded by Incyte Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben A. Mesa.

Ethics declarations

Conflict of interest

R. A. M. has received research funding from Genentech, Gilead, Incyte, NS Pharma, and Promedior, and served as a consultant for Novartis. R. S. K. is on Incyte’s advisory board. S. V. has received research funding from AstraZeneca, Bristol-Myers Squibb, Celgene, CTI BioPharma, Geron, Gilead, Incyte, Lilly Oncology, Novartis, NS Pharma, Promedior, and Seattle Genetics and is on Incyte’s advisory board.

Funding

Medical writing support was funded by Incyte Corporation.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesa, R.A., Komrokji, R.S. & Verstovsek, S. Ruxolitinib dose management as a key to long-term treatment success. Int J Hematol 104, 420–429 (2016). https://doi.org/10.1007/s12185-016-2084-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-2084-1

Keywords

Navigation