Skip to main content
Log in

TP53 mutations in older adults with acute myeloid leukemia

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The net benefits of induction therapy for older adults with acute myeloid leukemia (AML) remain controversial. Because AML in older adults is a heterogeneous disease, it is important to identify those who are unlikely to benefit from induction therapy based on information available at the initial assessment. We used next-generation sequencing to analyze TP53 mutation status in AML patients aged 60 years or older, and evaluated its effects on outcomes. TP53 mutations were detected in 12 of 77 patients (16 %), and there was a significant association between TP53 mutations and monosomal karyotype. Patients with TP53 mutations had significantly worse survival than those without (P = 0.009), and multivariate analysis identified TP53 mutation status as the most significant prognostic factor for survival. Neverthelsess, TP53-mutated patients had a 42 % chance of complete remission and a median survival of 8.0 months, which compares favorably with those who did not undergo induction therapy, even in the short term. These results suggest that screening for TP53 mutations at diagnosis is useful for identifying older adults with AML who are least likely to respond to chemotherapy, although the presence of this mutation alone does not seem to justify rejecting induction therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Juliusson G, Antunovic P, Derolf A, Lehmann S, Mollgard L, Stockelberg D, et al. Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood. 2009;113:4179–87.

    Article  CAS  PubMed  Google Scholar 

  2. Ostgard LS, Norgaard JM, Sengelov H, Severinsen M, Friis LS, Marcher CW, et al. Comorbidity and performance status in acute myeloid leukemia patients: a nation-wide population-based cohort study. Leukemia. 2015;29:548–55.

    Article  CAS  PubMed  Google Scholar 

  3. Yanada M, Naoe T. Acute myeloid leukemia in older adults. Int J Hematol. 2012;96:186–93.

    Article  PubMed  Google Scholar 

  4. Farag SS, Archer KJ, Mrozek K, Ruppert AS, Carroll AJ, Vardiman JW, et al. Pretreatment cytogenetics add to other prognostic factors predicting complete remission and long-term outcome in patients 60 years of age or older with acute myeloid leukemia: results from Cancer and Leukemia Group B 8461. Blood. 2006;108:63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grimwade D, Walker H, Harrison G, Oliver F, Chatters S, Harrison CJ, et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood. 2001;98:1312–20.

    Article  CAS  PubMed  Google Scholar 

  6. Kim SJ, Cheong JW, Kim DY, Lee JH, Lee KH, Kim YK, et al. Role of induction and consolidation chemotherapy in elderly acute myeloid leukemia patients. Int J Hematol. 2014;100:141–51.

    Article  CAS  PubMed  Google Scholar 

  7. Yanada M, Okamoto A, Inaguma Y, Tokuda M, Morishima S, Kanie T, et al. The fate of patients with acute myeloid leukemia not undergoing induction chemotherapy. Int J Hematol. 2015;102:35–40.

    Article  PubMed  Google Scholar 

  8. Muller PA, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014;25:304–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haferlach C, Dicker F, Herholz H, Schnittger S, Kern W, Haferlach T. Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia. 2008;22:1539–41.

    Article  CAS  PubMed  Google Scholar 

  10. Bowen D, Groves MJ, Burnett AK, Patel Y, Allen C, Green C, et al. TP53 gene mutation is frequent in patients with acute myeloid leukemia and complex karyotype, and is associated with very poor prognosis. Leukemia. 2009;23:203–6.

    Article  CAS  PubMed  Google Scholar 

  11. Rucker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H, et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 2012;119:2114–21.

    Article  PubMed  Google Scholar 

  12. Grossmann V, Schnittger S, Kohlmann A, Eder C, Roller A, Dicker F, et al. A novel hierarchical prognostic model of AML solely based on molecular mutations. Blood. 2012;120:2963–72.

    Article  CAS  PubMed  Google Scholar 

  13. Kihara R, Nagata Y, Kiyoi H, Kato T, Yamamoto E, Suzuki K, et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia. 2014;28:1586–95.

    Article  CAS  PubMed  Google Scholar 

  14. Hou HA, Chou WC, Kuo YY, Liu CY, Lin LI, Tseng MH, et al. TP53 mutations in de novo acute myeloid leukemia patients: longitudinal follow-ups show the mutation is stable during disease evolution. Blood Cancer J. 2015;5:e331.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    Article  CAS  PubMed  Google Scholar 

  16. Shaffer LG, Slovak ML, Campbell LJ, International Standing Committee on Human Cytogenetic Nomenclature. ISCN 2009: an international system for human cytogenetic nomenclature (2009). Basel: Karger; 2009.

    Google Scholar 

  17. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010;116:354–65.

    Article  CAS  PubMed  Google Scholar 

  18. Breems DA, Van Putten WL, De Greef GE, Van Zelderen-Bhola SL, Gerssen-Schoorl KB, Mellink CH, et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 2008;26:4791–7.

    Article  PubMed  Google Scholar 

  19. Whibley C, Pharoah PD, Hollstein M. p53 polymorphisms: cancer implications. Nat Rev Cancer. 2009;9:95–107.

    Article  CAS  PubMed  Google Scholar 

  20. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001;97:2434–9.

    Article  CAS  PubMed  Google Scholar 

  21. Oran B, Weisdorf DJ. Survival for older patients with acute myeloid leukemia: a population-based study. Haematologica. 2012;97:1916–24.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Appelbaum FR, Gundacker H, Head DR, Slovak ML, Willman CL, Godwin JE, et al. Age and acute myeloid leukemia. Blood. 2006;107:3481–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kantarjian H, O’Brien S, Cortes J, Giles F, Faderl S, Jabbour E, et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer. 2006;106:1090–8.

    Article  PubMed  Google Scholar 

  24. Walter RB, Othus M, Borthakur G, Ravandi F, Cortes JE, Pierce SA, et al. Prediction of early death after induction therapy for newly diagnosed acute myeloid leukemia with pretreatment risk scores: a novel paradigm for treatment assignment. J Clin Oncol. 2011;29:4417–23.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Othus M, Kantarjian H, Petersdorf S, Ravandi F, Godwin J, Cortes J, et al. Declining rates of treatment-related mortality in patients with newly diagnosed AML given ‘intense’ induction regimens: a report from SWOG and MD Anderson. Leukemia. 2014;28:289–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Medeiros BC, Othus M, Fang M, Roulston D, Appelbaum FR. Prognostic impact of monosomal karyotype in young adult and elderly acute myeloid leukemia: the Southwest Oncology Group (SWOG) experience. Blood. 2010;116:2224–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kayser S, Zucknick M, Dohner K, Krauter J, Kohne CH, Horst HA, et al. Monosomal karyotype in adult acute myeloid leukemia: prognostic impact and outcome after different treatment strategies. Blood. 2012;119:551–8.

    Article  CAS  PubMed  Google Scholar 

  28. Yanada M, Kurosawa S, Yamaguchi T, Yamashita T, Moriuchi Y, Ago H, et al. Prognosis of acute myeloid leukemia harboring monosomal karyotype in patients treated with or without allogeneic hematopoietic cell transplantation after achieving complete remission. Haematologica. 2012;97:915–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yanada M. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia during first complete remission: a clinical perspective. Int J Hematol. 2015;101:243–54.

    Article  CAS  PubMed  Google Scholar 

  30. Scholl S, Theuer C, Scheble V, Kunert C, Heller A, Mugge LO, et al. Clinical impact of nucleophosmin mutations and Flt3 internal tandem duplications in patients older than 60 yr with acute myeloid leukaemia. Eur J Haematol. 2008;80:208–15.

    Article  CAS  PubMed  Google Scholar 

  31. Becker H, Marcucci G, Maharry K, Radmacher MD, Mrozek K, Margeson D, et al. Favorable prognostic impact of NPM1 mutations in older patients with cytogenetically normal de novo acute myeloid leukemia and associated gene- and microRNA-expression signatures: a Cancer and Leukemia Group B study. J Clin Oncol. 2010;28:596–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Whitman SP, Maharry K, Radmacher MD, Becker H, Mrozek K, Margeson D, et al. FLT3 internal tandem duplication associates with adverse outcome and gene- and microRNA-expression signatures in patients 60 years of age or older with primary cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood. 2010;116:3622–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Singh H, Asali S, Werner LL, DeAngelo DJ, Ballen KK, Amrein PC, et al. Outcome of older adults with cytogenetically normal AML (CN-AML) and FLT3 mutations. Leuk Res. 2011;35:1611–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lazenby M, Gilkes AF, Marrin C, Evans A, Hills RK, Burnett AK. The prognostic relevance of flt3 and npm1 mutations on older patients treated intensively or non-intensively: a study of 1312 patients in the UK NCRI AML16 trial. Leukemia. 2014;28:1953–9.

    Article  CAS  PubMed  Google Scholar 

  35. Ostronoff F, Othus M, Lazenby M, Estey E, Appelbaum FR, Evans A, et al. Prognostic significance of NPM1 mutations in the absence of FLT3-internal tandem duplication in older patients with acute myeloid leukemia: a SWOG and UK National Cancer Research Institute/Medical Research Council report. J Clin Oncol. 2015;33:1157–64.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masamitsu Yanada.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

M. Yanada and Y. Yamamoto contributed equally to this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanada, M., Yamamoto, Y., Iba, S. et al. TP53 mutations in older adults with acute myeloid leukemia. Int J Hematol 103, 429–435 (2016). https://doi.org/10.1007/s12185-016-1942-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-1942-1

Keywords

Navigation